

Government of Western Australia School Curriculum and Standards Authority

Chemistry

Stage 3 Standards Guide

Exemplification of Standards through the 2011 WACE Examination

2012/2601

Copyright

© School Curriculum and Standards Authority, 2012

This document—apart from any third party copyright material contained in it—may be freely copied, or communicated on an intranet, for noncommercial purposes by educational institutions, provided that it is not changed in any way and that the School Curriculum and Standards Authority is acknowledged as the copyright owner. Copying or communication for any other purpose can be done only within the terms of the Copyright Act or by permission of the School

Curriculum and Standards Authority.

Copying or communication of any third party copyright material contained in this document can be done only within the terms of the Copyright Act or by permission of the copyright owners.

Disclaimer

Any resources such as texts, websites and so on that may be referred to in this document are provided as examples of resources that teachers can use to support their learning programs. Their inclusion does not imply that they are mandatory or that they are the only resources relevant to the course.

CONTENTS

Introductory notes for Chemistry Stage 3 Standards Guide 2011	
Section One: Multiple-choice	
Questions 1 – 3	
Questions 4 – 7	
Questions 8 – 9	
Questions 10 – 11	
Questions 12 – 14	
Questions 15 – 17	
Questions 18 – 20	
Questions 21 – 24	
Question 25	
Keywords: Questions 1 – 25	
Section Two: Short answer	
Question 26	
Question 27	
Question 28	
Question 29	
Question 30	
Question 31	
Question 32	
Question 33	
Question 34	
Question 35	
Section Three: Extended answer	
Question 36	
Question 37	
Question 38	
Question 39	
Question 40	
Question 41	
Appendix 1: Course achievement band descriptions	
Appendix 2: Rasch analysis of examinations	

Introductory notes for Chemistry Stage 3 Standards Guide 2011

What are the 'standards' and how were they developed?

Standards describe the kinds of qualities seen in candidate responses in WACE examination conditions. In late 2011, WACE (written) examination scripts for Chemistry Stage 3 were analysed by teacher expert panels who identified the qualities of candidates' scripts at each of five performance bands: 'excellent achievement', 'high achievement', 'satisfactory achievement', 'limited achievement' and 'inadequate achievement'. WACE Course scores were reported against these performance bands.

The band descriptions for Chemistry Stage 3 are provided in Appendix 1.

What do standards tell us?

The standards described through the band descriptions tell us, in general terms, how students need to be performing if they wish to achieve a particular 'standard'. To get a clearer picture of what each standard means, teachers and students can refer to the candidate responses provided. This will help students see what they need to do to improve and help them understand how their work compares with the standards. Standards can also assist teachers in providing students with feedback about their work and see how they might need to modify their teaching.

What is provided in this Standards Guide?

There are five main components in this standards guide:

- 1 questions from the examination paper
- 2 the marking key for each question
- 3 candidate responses and annotated marker notes
- 4 keywords and examination statistics such as the highest and lowest marks achieved, mean, standard deviation, etc
- 5 examiner comments.

What standards have been exemplified in this guide?

Sample candidate responses which illustrate 'excellent' and 'satisfactory' performance have been included in this guide, along with marker annotations. In most cases, 'excellent' responses received full marks or close to full marks. If there were no responses judged to be 'excellent', a 'high achievement' response sample may be provided. Judgements about the standard illustrated in a candidate response must also take into account the difficulty of the question. It should also be remembered that overall judgements about standards are best made with reference to a range of performances across a range of assessment types and conditions.

How well did this examination 'target' the ability of candidates?

Rasch analysis of raw examination marks achieved by candidates enables us to provide estimates of question difficulty and student ability, on the same scale. From this relationship, we are able to evaluate how well the questions in this examination were broadly targeted to candidates' abilities.

Table 1 in Appendix 2 provides estimates of the difficulty of each question. Graph 2 (where provided) in Appendix 2 shows the distribution of the student ability and question difficulty. Graph 3 (where provided) shows the distribution of the student ability and item thresholds. Explanatory notes for these graphs are also provided in Appendix 2.

Other points to consider when viewing this guide

Use of half marks

Examination items are marked in whole numbers. Half marks occurring in this guide are a result of averaging the whole number marks from each of two markers.

Section statistics and marks weightings

Section statistics for the highest mark achieved, lowest mark achieved, mean and standard deviation are based on weighted section total marks. Raw mark totals are provided for each section. The raw marks distribution and the weighted total marks distribution is provided on the following page.

Examination standards for 2011 WACE examinations

The analysis of written examination scripts was used to determine performance band descriptions for 2011.

Marks distribution for this examination

Section	Number of questions available	Number of questions to be answered	Suggested working time (minutes)	Marks available	Percentage of exam
Section One: Multiple-choice	25	25	50	25	25
Section Two: Short answer	10	10	60	70	35
Section Three: Extended answer	6	6	70	80	40
Total				100	

Chemistry Stage 3

Section One: Multiple-choice

25 marks

Weighted section statistics

Note: Raw section total marks = 25 Weighted section total marks = 25

Statistics ID = CHE3-S01 Number of attempts = 4753 Highest mark achieved = 25.00 Lowest mark achieved = 0.00 Mean = 17.48 Standard deviation = 4.19 Correlation between section and exam = 0.86

This section has 25 questions

Suggested working time: 50 minutes

Examiners' comments for this section

This section was rather easy for candidates, while the questions requiring explanation or mastery of calculations proved more challenging, but were probably pitched at about the right level. Question 5 and Question 8 were the least difficult.

Government of Western Australia School Curriculum and Standards Authority

Questions 1 - 3

1. Consider the ion below.

$$^{115}_{49}$$
In³⁺

Which one of the following lists the number of protons, neutrons and electrons for this ion correctly?

	Protons	Neutrons	Electrons
(a)	115	49	49
(b)	49	66	49
(c)	49	66	52
(d)	49	66	46

Refer to the following table to answer Questions 2 and 3.

The table shows the approximate successive molar ionisation energies (in kJ mol^{-1}) of five elements denoted I to V.

Element		Ionisation energy			
Element	1st	2nd	3rd	4th	
1	502	4570	6919	9550	
II	580	1820	2750	11600	
III	590	1145	4910	6490	
IV	744	1460	7740	10550	
V	1250	2300	3820	5160	

- 2. Which two elements are most likely to be Group 2 (alkaline earth) metals?
- (a) I and III
- (b) III and IV
- (c) II and V
- (d) I and V
- 3. Which element would react with chlorine to form a compound with the general formula ACl₃, where A represents one of the five elements (I to V) listed in the table above?

(a)	- 1

- (b) II
- (c) III
- (d) IV

Question statistics

Statistics ID = CHE3-MC-1 Number of attempts = 4753Correct answer = (d) (a) = 39 (0.82%) (b) = 271 (5.70%) (c) = 243 (5.11%) (d) = 4197 (88.30%) Question difficulty = Very easy Correlation between question and section = 0.34

Statistics ID = CHE3-MC-2 Number of attempts = 4753 Correct answer = (b) (a) = 277 (5.83%) (b) = 4120 (86.68%) (c) = 159 (3.35%) (d) = 194 (4.08%) Question difficulty = Easy Correlation between question and section = 0.44

Statistics ID = CHE3-MC-3 Number of attempts = 4753 Correct answer = (b) (a) = 251 (5.28%) (b) = 3956 (83.23%) (c) = 220 (4.63%) (d) = 322 (6.77%) Question difficulty = Easy Correlation between question and section = 0.45

Government of Western Australia School Curriculum and Standards Authority

Questions

Questions 4 – 7

Question statistics

Statistics ID = CHE3-MC-4

Number of attempts = 4753

Correct answer = (c) (a) = 471 (9.91%) (b) = 157 (3.30%)

(c) = 3418 (71.91%)

(d) = 700 (14.73%)

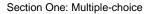
Question difficulty = Easy

- 4. Which of the following statements about the Group 2 metals are true?
 - (i) Their first ionisation energy decreases with increasing atomic number.
 - (ii) Two electrons are present in the valence shell of the metal.
 - (iii) Their chemical reactivity increases with increasing atomic number.
 - (iv) Their +2 (positive) ions have noble gas configurations.
 - (v) They are likely to form covalent compounds with Group 17 elements.
- (a) (ii) and (iii) only
- (b) (iv) and (v) only
- (c) (i), (ii), (iii) and (iv)
- (d) (i), (ii), (iii), (iv) and (v)
- 5. Which one of the following best explains the decrease in atomic radius as the atomic number increases across Period 3 of the Periodic Table?

(a) increasing nuclear charge

- (b) decreasing number of neutrons
- (c) decreasing number of protons
- (d) the elements becoming more noble gas-like
- 6. Which one of the following trends occurs as the atomic number increases for the Group 17 elements?
- (a) atomic radii decrease
- (b) melting points decrease
- (c) the tendency to gain electrons decreases
- (d) the elements become more reactive

Statistics ID = CHE3-MC-5 Number of attempts = 4753Correct answer = (a) (a) = 4219 (88.76%) (b) = 62 (1.30%) (c) = 145 (3.05%) (d) = 323 (6.80%) Question difficulty = Very easy Correlation between question and section = 0.38

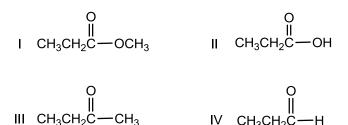

Correlation between question and section = 0.40

Statistics ID = CHE3-MC-6 Number of attempts = 4753 Correct answer = (c) (a) = 516 (10.86%) (b) = 514 (10.81%) (c) = 3009 (63.31%) (d) = 709 (14.92%) Question difficulty = Moderate Correlation between question and section = 0.44

Statistics ID = CHE3-MC-7

- 7. What is the formula of an ionic compound consisting of positive ions with a configuration 2,8 and negative ions with the same configuration?
- (a) LiF
- (b) MgS
- (c) NaF
- (d) KCł

Number of attempts = 4753 Correct answer = (c) (a) = 403 (8.48%) (b) = 825 (17.36%) (c) = 3307 (69.58%) (d) = 209 (4.40%) Question difficulty = Easy Correlation between question and section = 0.43



Questions 8 - 9

Question statistics

Statistics ID = CHE3-MC-8

Questions 8 and 9 refer to the compounds shown below.

8. Which one of the following lists places these compounds in their correct class?

	I	II	III	IV
(a)	Ester	Aldehyde	Ketone	Carboxylic acid
(b)	Carboxylic acid	Ketone	Aldehyde	Ester
(c)	Ketone	Carboxylic acid	Ester	Aldehyde
(d)	Ester	Carboxylic acid	Ketone	Aldehyde

Number of attempts = 4753Correct answer = (d) (a) = 119 (2.50%)(b) = 65 (1.37%)(c) = 187 (3.93%)(d) = 4381 (92.17%)Question difficulty = Very easy Correlation between question and section = 0.40

- 9. Which of these compounds can be prepared by oxidation of 1-propanol, CH₃CH₂CH₂OH?
- (a) I only
- (b) I and II
- (c) II and III
- (d) II and IV

Statistics ID = CHE3-MC-9 Number of attempts = 4753 Correct answer = (d) (a) = 162 (3.41%) (b) = 254 (5.34%) (c) = 276 (5.81%) (d) = 4057 (85.36%) Question difficulty = Easy Correlation between question and section = 0.41

Government of Western Australia School Curriculum and Standards Authority

Questions

Questions 10 - 11

10. An enzyme is a biological catalyst. Esters can be hydrolysed, as represented below by an esterase enzyme.

esterase

ester + water - carboxylic acid + alcohol

In the presence of esterase which one of the following statements is true for this process?

- (a) The position of the equilibrium for this reaction is shifted to the right.
- (b) The rate of forward reaction and rate of reverse reaction both increase equally.
- (c) The rate of forward reaction increases more than the rate of reverse reaction.
- (d) The rate of forward reaction increases and rate of reverse reaction decreases.
- 11. Hydrogen can be produced by the reaction

 $CH_4(g) + H_2O(g) - CO(g) + 3 H_2(g) \Delta H > 0$

Which one of the following will increase the equilibrium yield of hydrogen?

- (a) increasing the total pressure of the reaction system
- (b) decreasing the partial pressure of the water vapour
- (c) removing carbon monoxide from the system as it is produced
- (d) decreasing the temperature of the system

Question statistics

Statistics ID = CHE3-MC-10 Number of attempts = 4753 Correct answer = (b) (a) = 272 (5.72%) (b) = 3430 (72.16%) (c) = 858 (18.05%) (d) = 187 (3.93%) Question difficulty = Easy Correlation between question and section = 0.36

Statistics ID = CHE3-MC-11 Number of attempts = 4753 Correct answer = (c) (a) = 437 (9.19%) (b) = 312 (6.56%) (c) = 3580 (75.32%) (d) = 422 (8.88%) Question difficulty = Easy Correlation between question and section = 0.49

Government of Western Australia School Curriculum and Standards Authority

Questions

Questions 12 - 14

- 12. Which of the properties listed below are characteristic of a gaseous system in dynamic equilibrium?
 - (i) The concentrations of reactants are equal to the concentrations of products.
 - (ii) The concentrations of reactants and products are constant.
 - (iii) The rate of the forward reaction is equal to the rate of the reverse reaction.
 - (iv) The pressure of the system is constant.
- (a) (i), (ii) and (iii)
- (b) (i), (ii) and (iv)
- (c) (ii), (iii) and (iv)
- (d) (iii) only
- In which one of the following will a precipitate be formed when 0.1 mol L⁻¹ solutions of the compounds listed are mixed at 25°C?
- (a) K₂SO₄, NiCl₂ and NaCl
- (b) BaC ℓ_2 , H₂SO₄ and HNO₃
- (c) $Zn(NO_3)_2$, NaBr and H_2SO_4
- (d) K_3PO_4 , $(NH_4)_2CO_3$ and CH_3COOH
- 14. Assuming the substances below dissociate to the same extent, a 500 mL sample of which one of the following 0.01 mol L^{-1} solutions will contain the greatest number of ions?
- (a) $(NH_4)_2CO_3$
- (b) $K_2Cr_2O_7$
- (c) Ca(OH)₂
- (d) Na_3PO_4

Question statistics

Statistics ID = CHE3-MC-12 Number of attempts = 4753Correct answer = (c) (a) = 469 (9.87%) (b) = 223 (4.69%) (c) = 3164 (66.57%) (d) = 893 (18.79%) Question difficulty = Easy Correlation between question and section = 0.42

Statistics ID = CHE3-MC-13 Number of attempts = 4753Correct answer = (b) (a) = 175 (3.68%) (b) = 3966 (83.44%) (c) = 206 (4.33%) (d) = 400 (8.42%) Question difficulty = Easy Correlation between question and section = 0.47

Statistics ID = CHE3-MC-14 Number of attempts = 4753Correct answer = (d) (a) = 900 (18.94%) (b) = 626 (13.17%) (c) = 367 (7.72%) (d) = 2852 (60.00%) Question difficulty = Moderate Correlation between question and section = 0.55

Questions 15 - 17

Question statistics

- 15. Consider the following substances.
- (i) $BaSO_4$ (ii) $CH_3CH_2CH_2CH_2OH$

(iv)

(iii) CH₃CH₂COCH₃

О || H₂N—CH₂-С—ОН

Which one of the following lists the substances in order of **decreasing** solubility in water?

(a)	(i) (i)	(iv)	(ii) (ii)	(iii) (iv)
(b) (c)	(i) (iv)	(iii) (ii)	(ii) (iii)	(iv) (i)
(d)	(ii)	(iv)	(iii)	(i)

16. Which one of the following is the strongest electrolyte?

- (a) NH₄Cℓ
- (b) H_3PO_4
- (c) H₂O
- (d) CH₃COOH

17. Which one of the following describes the acidity/basicity of a solution of the following compounds when dissolved in distilled water?

(a)	Ammonium chloride acidic	Potassium carbonate basic	Sodium nitrate neutral	Sodium ethanoate basic	
(b)	acidic	basic	acidic	basic	
(c)	basic	acidic	neutral	acidic	
(d)	basic	basic	basic	acidic	

Statistics ID = CHE3-MC-15 Number of attempts = 4753 Correct answer = (c) (a) = 954 (20.07%) (b) = 478 (10.06%) (c) = 2501 (52.62%) (d) = 816 (17.17%) Question difficulty = Moderate Correlation between question and section = 0.32

Statistics ID = CHE3-MC-16 Number of attempts = 4753 Correct answer = (a) (a) = 2471 (51.99%) (b) = 1787 (37.60%) (c) = 346 (7.28%) (d) = 143 (3.01%) Question difficulty = Moderate Correlation between question and section = 0.33

Statistics ID = CHE3-MC-17 Number of attempts = 4753 Correct answer = (a) (a) = 3284 (69.09%) (b) = 428 (9.00%) (c) = 595 (12.52%) (d) = 435 (9.15%) Question difficulty = Easy Correlation between question and section = 0.48

Questions 18 - 20

Question statistics

- 18. In which one of the following is the reactant in bold reacting as an acid?
- $2Na(s) + 2H_2O \rightarrow 2NaOH + H_2$ (a)
- (b)
- $\begin{array}{rcl} \mathsf{NH}_3 \ \ &+ \ \mathsf{H}_2\mathsf{O} \ \ &\to \ \mathsf{NH}_4^+ \ \ &+ \ \mathsf{OH}^- \\ \mathsf{Fe}(\mathsf{H}_2\mathsf{O})_6^{3+} \ \ &+ \ \mathsf{H}_2\mathsf{O} \ \ &\to \ \mathsf{Fe}(\mathsf{H}_2\mathsf{O})_5(\mathsf{OH})^{2+} \ \ &+ \ \mathsf{H}_3\mathsf{O}^+ \end{array}$ (c)
- (d) $CO_2 + H_2O \rightarrow H_2CO_3$
- 19. Which one of the following gives the correct formula for sodium chlorite?
- NaClO (a)
- (b) NaClO₂
- NaClO₃ (c)
- (d) NaClO₄
- 20. Four water samples were found to be contaminated with an arsenic chloride compound. The samples were analysed and the arsenic and chloride content of each sample was reported, as shown below.

Sample	As content (g)	Cl content (g)
(i)	0.68	0.97
(ii)	0.38	0.55
(iii)	0.48	0.68
(iv)	0.41	0.96

Which one of the samples contains a different arsenic chloride contaminant from that in the other three samples?

- (a) (i)
- (b) (ii)
- (c) (iii)
- (d) (iv)

Statistics ID = CHE3-MC-18 Number of attempts = 4753 Correct answer = (c)(a) = 212 (4.46%)(b) = 422 (8.88%) (c) = 3955 (83.21%) (d) = 159 (3.35%)Question difficulty = Easy Correlation between question and section = 0.39

Statistics ID = CHE3-MC-19 Number of attempts = 4753 Correct answer = (b) (a) = 1940 (40.82%) (d) = 379 (7.97%)Question difficulty = Difficult Correlation between question and section = 0.09

Statistics ID = CHE3-MC-20 Number of attempts = 4753 Correct answer = (d)(a) = 639 (13.44%) (b) = 464 (9.76%)(c) = 107 (2.25%)(d) = 3532 (74.31%)Question difficulty = Easy Correlation between question and section = 0.40

Questions 21 - 24

Question statistics

Statistics ID = CHE3-MC-21

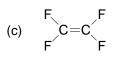

Number of attempts = 4753

Correct answer = (c)

(a) = 1249 (26.28%)

- How many moles of electrons must be exchanged to oxidise 1 mole of hypophosphorous acid, H₃PO₂, to phosphoric acid, H₃PO₄?
- (a) 2
- (b) 3
- (c) 4
- (d) 5
- 22. In which one of the following compounds is rhenium (Re) in the highest oxidation state?
- (a) NaReO₄
- (b) ReClO
- (c) Re_2O_3
- (d) ReCl₅
- 23. Corrosion is a redox process. Which one of the following explains why coating iron with nickel protects the iron from corrosion?
- (a) Nickel accepts electrons from iron.
- (b) Iron and nickel form an alloy that is particularly resistant to redox processes.
- (c) Nickel is a stronger oxidising agent than iron.
- (d) The thin coating of nickel prevents iron from reacting.
- 24. Which one of the species below is **not** commonly used as a reducing agent?
- (a) $C_2 O_4^{2-}$
- (b) H₂
- (c) C₂
- (d) C

- $\dot{(b)} = 299 (\dot{6}.29\%)$ (c) = 3103 (65.29%) (d) = 88 (1.85%) Question difficulty = Easy Correlation between question and section = 0.48
- Statistics ID = CHE3-MC-22 Number of attempts = 4753 Correct answer = (a) (a) = 4006 (84.28%) (b) = 155 (3.26%) (c) = 171 (3.60%) (d) = 416 (8.75%) Question difficulty = Easy Correlation between question and section = 0.40
- Statistics ID = CHE3-MC-23 Number of attempts = 4753 Correct answer = (d) (a) = 186 (3.91%) (b) = 250 (5.26%) (c) = 1601 (33.68%) (d) = 2699 (56.79%) Question difficulty = Moderate Correlation between question and section = 0.33
- Statistics ID = CHE3-MC-24 Number of attempts = 4753 Correct answer = (c) (a) = 552 (11.61%) (b) = 569 (11.97%) (c) = 1358 (28.57%) (d) = 2261 (47.57%) Question difficulty = Difficult Correlation between question and section = 0.34



Question 25

Question statistics

- 25. Which one of the following is a polar molecule?
- (a) CO
- (b) BCl₃

(d) CF₄

Statistics ID = CHE3-MC-25 Number of attempts = 4753 Correct answer = (a) (a) = 3194 (67.20%) (b) = 1217 (25.60%) (c) = 179 (3.77%) (d) = 155 (3.26%) Question difficulty = Easy Correlation between question and section = 0.42

Keywords

Keywords: Questions 1 – 25

- 1. Atomic theory
- 2. Periodic table
- 3. Ionic bonding
- 4. Periodic table
- 5. Periodic table
- 6. Periodic table
- 7. Ionic bonding
- 8. Organic compounds
- 9. Redox reactions
- 10. Equilibrium
- 11. Equilibrium
- 12. Equilibrium
- 13. Precipitation (Chemistry), Chemical reactions
- 14. Chemical reactions
- 15. Solubility
- 16. Electrolytes
- 17. Hydrolysis
- 18. Acids
- 19. Chemical formula
- 20. Chemical formula
- 21. Stoichiometry, Chemical reactions
- 22. Redox reactions
- 23. Corrosion
- 24. Redox reactions
- 25. Molecular structure, Chemical formula

Chemistry: Stage 3 Standards Guide

Chemistry Stage 3

Section Two: Short answer

70 marks

Weighted section statistics

Note: Raw section total marks = 70 Weighted section total marks = 35 Statistics ID = CHE3-S02 Number of attempts = 4751 Highest mark achieved = 35.00 Lowest mark achieved = 0.00 Mean = 20.80 Standard deviation = 6.86 Correlation between section and exam = 0.94

This section has **10** questions. Answer **all** questions.

Suggested working time: 60 minutes

Examiners' comments for this section

Questions 29, 30 and 35 were the most difficult questions, while Question 26 was the least difficult. Although the mean for this section was lower relative to 2010, there was an apparent improvement in the structure and coherence of sentences in questions requiring an explanatory answer.

Question 26

Complete the table below by drawing the Lewis structures of the molecules listed and either drawing or naming the shape of the molecule.

All valence shell electron pairs should be represented either as : or as - .

The first row has been completed as an example. (4 marks)

Molecule	Lewis structure	Sketch or name of shape
H₂O	One of H∶Ö҉H or H – Ö – H or H – Ō – H	One of bent, or ∠ ^O ∖ H H
Cł2O		
PCł3		

Marking key

Molecule	Lewis structure	Sketch or name of shape
H₂O	One of H∶Ö಼: H or H – Ö – H or H – Ō – H	One of bent, or ∠ ^O ∖ H H
Cł2O		V-shaped or bent
PCł3	: Ċŀ: : Ċŀ: : Ċŀ:	Triangular pyramidal

Description	Marks
1 mark for each Lewis structure; dashes or dots acceptable for representing electron pairs. Award 1 mark if bonding pairs are correct but lone pairs are missing.	1–2
1 mark for each shape; accept pyramidal	1–2
Question incorrectly answered	0
Question not attempted	_
Total	4

NB No follow-through marks. Answers must conform to marking key e.g. each cell must be correct.

Keywords

Molecular structure

Question statistics

Statistics ID = CHE3-26 Number of attempts = 4748 Highest mark achieved = 4.00 Lowest mark achieved = 0.00 Mean = 3.27 Standard deviation = 0.88 Question difficulty = Easy Correlation between question and section = 0.45

Candidate responses

Question 26

Complete the table below by drawing the Lewis structures of the molecules listed and either drawing or naming the shape of the molecule.

All valence shell electron pairs should be represented either as : or as -.

The first row has been completed as an example. (4 marks)

Notes

Molecule	Lewis structure	Sketch or name of shape
H₂O	One of H:Ö; H or H – Ö – H or H – Ō – H	One of bent, or ノ ^O へ H H
20e⁻ Cl2O	$\begin{array}{c} x \\ x $	bent
२७६ РС₹₃	$: \ddot{\mathbf{u}} - \dot{\mathbf{b}} = \ddot{\mathbf{u}};$	py rami dal

Excellent response 4/4 marks

Completes the table with Lewis structures and names of shapes.

Molecule

Lewis structure

Candidate responses (continued)

Ν	otes	

Sketch or name of shape

Satisfactory response 2/4 marks

Completes the table with correct Lewis structures.

Names of shapes are incorrect.

H ₂ O	One of H∶Ö∷ H or H – Ö – H or H – Ō – H	One of bent, or V
Cł2O		linear
PCt ₃	s 777:24. :CI:CI:	triangular planav

Examiners' comments

Although this was the least difficult question incorrect responses were disappointing. Candidates must be encouraged to make the connection between number of electron domains (i.e. VSEPR) and molecular shape.

Question 27 (10 marks)

Question statistics

Statistics ID = CHE3-27 Number of attempts = 4735 Highest mark achieved = 10.00 Lowest mark achieved = 0.00 Mean = 5.80 Standard deviation = 3.02 Question difficulty = N/A Correlation between question and section = 0.80

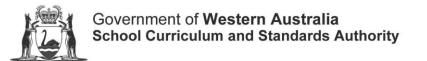
27(a)

Complete the table by writing the formula or drawing the structure for the conjugate base, species X or conjugate acid in the blank spaces as appropriate. Species X is the species that is able to form both a conjugate base and a conjugate acid. (6 marks)

Conjugate base	Species X	Conjugate acid
		$CH_3 NH_3^+$
C ₂ O ₄ ²⁻		
	ОН О Н HOC_ _CO_ Н O OH	

Marking key

Conjugate base	Species X	Conjugate acid
CH₃NH⁻	CH ₃ NH ₂	$CH_3NH_3^+$
C ₂ O ₄ ²⁻	HC₂O₄ [−]	H ₂ C ₂ O ₄
ОН О -0_С_Н_С С_ _С_0- 0 ОН	OH O H HO_C_I_C_O- H O OH	ОН О H = C C OH = H O OH


Description		Marks
1 mark for each cell.		1–6
Question incorrectly answered		0
Question not attempted		_
	Total	6

Keywords

Acids

Question statistics

Statistics ID = CHE3-28 Number of attempts = 4517 Highest mark achieved = 6.00 Lowest mark achieved = 0.00 Mean = 3.20 Standard deviation = 2.28 Question difficulty = Moderate Correlation between question and section = 0.71

Candidate responses

27(a)

Complete the table by writing the formula or drawing the structure for the conjugate base, species X or conjugate acid in the blank spaces as appropriate. Species X is the species that is able to form both a conjugate base and a conjugate acid.

(6 marks)

Conjugate base	Species X	Conjugate acid
		CH₃NH₃⁺
C ₂ O ₄ ²⁻		
	OH O	

Notes

Conjugate base	Species X	Conjugate acid
(H3NH2	(H3 NH2	CH₃NH₃⁺
C ₂ O ₄ ²⁻	H <u>∓</u> H (₂0 ₄ -	H ₂ (204 ^m
-0 0H 0 -0 1 H 0 (- < 1 " -1 - (- () -0 H 0 -0 - () -0 -	ОН О Н Н С Н Н С С Н С С С С С С С С С С С С	но I H II C C C C C OH U H OH

Excellent response 6/6 marks

Correctly completes the table with conjugate base and conjugate acid.

Candidate responses (continued)

Conjugate base	Species X	Conjugate acid
CH3NH-	CH3NH2	CH₃NH₃⁺
C2O42-	H2 C2 Q 4	H3C204#
		HU C - C - OH HU C - C - OH H - O OH

Notes

Satisfactory response 4/6 marks

Correctly completes the table for two species of conjugate base and conjugate acid.

The $C_2O_4^{2-}$ examples are incorrect.

Lactic acid produced by muscles during exercise, is found in many milk products and is used in the brewing of beer. It is also added to a number of canned food items as a buffer.

The equation for the reaction of lactic acid with water is shown below.

$$CH_{3} \stackrel{I}{\underset{OH}{\overset{O}{\leftarrow}}} CH_{4} \stackrel{O}{\underset{H}{\overset{H}{\overset{H}{\equiv}}}} CH_{3} \stackrel{O}{\underset{H}{\overset{C}{\leftarrow}}} CH_{3} \stackrel{O}{\underset{H}{\overset{C}{\leftarrow}}} CH_{3} \stackrel{O}{\underset{H}{\overset{H}{\overset{H}{\equiv}}}} CH_{3} O^{+} \Delta H = -60 \text{ kJ mol}^{-1}$$

The value of the equilibrium constant for the above reaction, at 25°C, is approximately 7.9×10^{-5} .

27(b)

State whether the ratio of organic products to organic reactants will be equal to one, less than one (< 1) or greater than one (> 1) for this system at equilibrium at 25°C. (1 mark)

Marking key

Description	Marks
Ratio of P to R less than one <1; OR there are less P than R	1
Question incorrectly answered	0
Question not attempted	-
Total	1

Keywords

Equilibrium

Question statistics

Statistics ID = CHE3-29 Number of attempts = 4624Highest mark achieved = 1.00Lowest mark achieved = 0.00Mean = 0.59Standard deviation = 0.49Question difficulty = Moderate Correlation between question and section = 0.31

Candidate responses

27(b)

State whether the ratio of organic products to organic reactants will be equal to one, less than one (< 1) or greater than one (> 1) for this system at equilibrium at 25° C. (1 mark)

Ν	otes
	ULES

· <1 (les) than one)

Excellent response 1/1 mark

Correctly states the ratio of organic products to organic reactants.

27(c)

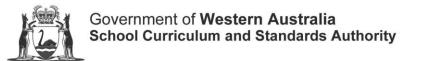
Predict the direction in which the equilibrium will shift immediately after the changes indicated in the table below. Write 'left', 'right' or 'no change'.

(3 marks)

Change	Direction of initial equilibrium shift
Decreasing the temperature	
Adding hydrochloric acid	
Adding sodium hydroxide	

Marking key

Change	Direction of initial equilibrium shift
Decreasing the temperature	Right
Adding hydrochloric acid	Left
Adding sodium hydroxide	Right


Description		Marks
1 mark for each cell		1–3
Question incorrectly answered		0
Question not attempted		_
	Total	3

Keywords

Equilibrium

Question statistics

Statistics ID = CHE3-30 Number of attempts = 4726 Highest mark achieved = 3.00Lowest mark achieved = 0.00Mean = 2.18Standard deviation = 1.00Question difficulty = Easy Correlation between question and section = 0.56

Candidate responses

27(c)

Predict the direction in which the equilibrium will shift immediately after the changes indicated in the table below. Write 'left', 'right' or 'no change'.

(3	marks)
----	--------

Change	Direction of initial equilibrium shift
Decreasing the temperature	
Adding hydrochloric acid	
Adding sodium hydroxide	

Direction of initial equilibrium shift

right

vight

left

Notes

Excellent	response
3/3 marks	

Predicts the direction of the initial equilibrium shift correctly.

Change	Direction of initial equilibrium shift		
Decreasing the temperature	night		
Adding hydrochloric acid	to no change		
Adding sodium hydroxide	right		

Satisfactory response 2/3 marks

Predicts the direction of the initial equilibrium shift correctly, for two of the three changes.

Examiners' comments

Change Decreasing the temperature

Adding hydrochloric acid

Adding sodium hydroxide

In Part (a), this question was not particularly well done. Candidates had difficulty drawing structures for conjugate acids/bases of what might be considered more 'complex' molecules, and identifying the acidic protons (hydrogens) in such structures. Candidates should be encouraged to draw structural diagrams where necessary. Care should also be taken in determining charge. In Part (b), there was some evidence that candidates are not able to interpret the magnitude of the equilibrium constant, in terms of concentration of reactants relative to that of products.

Government of Western Australia School Curriculum and Standards Authority

Question

Question 28

Chloromethane can be produced industrially by the reaction of methanol and hydrogen chloride at high temperature in the presence of a catalyst. The equation for this reaction is shown below.

 $CH_3OH + HC\ell \longrightarrow CH_3C\ell + H_2O$

The boiling points and melting points for each of the species involved in the reaction are shown below.

Species	Boiling point (°C)	Melting point (°C)
CH₃OH	65	-98
HCł	-85	-114
CH ₃ Cł	-24	-98
H ₂ O	100	0

Write the phase, i.e., solid (s), liquid (ℓ) or gas (g), of each species in this system at the temperatures shown in the table below, and predict the effect of an increase in total pressure on this equilibrium at each of the temperatures.

Temperature (°C)		Phase (s, ℓ or g)			Shift in equilbrium
	CH₃OH	HCł	CH₃Cł	H ₂ O	(right, left or no change)
-50					
40					
70					
110					

(8 marks)

Marking key

Temperature (°C)		Phas (s, ℓ o			Shift in equilbrium (right, left or no change)
	CH₃OH	HCł	CH ₃ Cł	H ₂ O	(fight, left of ho change)
-50	l	g	l	S	right
40	l	g	g	l	no change
70	g	g	g	ℓ	right
110	g	g	g	g	no change

Description	Marks
1 mark for correctly identifying phases at each temperature for each substance (All four at each temperature must be correct.)	1–4
1 mark for correct shift in equilibrium; award the mark if the phases are incorrect but the shift is correct based on incorrect phases **	1–4
Question incorrectly answered	0
Question not attempted	-
Total	8

** Shift in equilibrium must correspond with phases identified.

Keywords

Equilibrium

Question statistics

Statistics ID = CHE3-31 Number of attempts = 4742Highest mark achieved = 8.00Lowest mark achieved = 0.00Mean = 6.04Standard deviation = 2.10Question difficulty = Moderate Correlation between question and section = 0.61

Candidate responses

Question 28

Chloromethane can be produced industrially by the reaction of methanol and hydrogen chloride at high temperature in the presence of a catalyst. The equation for this reaction is shown below.

 $CH_3OH + HC\ell \longrightarrow CH_3C\ell + H_2O$

The boiling points and melting points for each of the species involved in the reaction are shown below.

Species	Boiling point (°C)	Melting point (°C)
CH₃OH	65	-98
HCł	-85	-114
CH ₃ Cł	-24	-98
H ₂ O	100	0

Write the phase, i.e., solid (s), liquid (l) or gas (g), of each species in this system at the temperatures shown in the table below, and predict the effect of an increase in total pressure on this equilibrium at each of the temperatures. **(8 marks)**

Temperature (°C)	Phase (s, ℓ or g)			Shift in equilbrium	
	CH₃OH	HCt	CH₃Cł	H₂O	(right, left or no change)
-50	1	g	ſ	S	right
40	ł	9	g	1	no change
70	9	5	9	l	right
110	J	g	9	9	no change

Notes

Excellent response 8/8 marks

Correctly identifies the phase of the species.

Using the equation, predicts the shifts in equilibrium.

Temperature (°C)	Phase (s, ℓ or g)				Shift in equilbrium
	CH₃OH	HCt	CH3C(H₂O	(right, left or no change).
-50	۹ L	\$ 9	L	S	-At change decrave
40	ι	ອງ	9	L	no change
70	S	9	2	L	increase
110	9	3	2	9	increase

Satisfactory response 5/8 marks

Correctly identifies the phase of the species.

Predicts the shifts in equilibrium of one out of four correctly.

Examiners' comments

This question was reasonably well done; most candidates, if they did not identify the phase of each species correctly, nevertheless could predict the direction of the shift in equilibrium (based on the phases they had identified), demonstrating a good understanding of equilibrium concepts. A large number of candidates were unable to identify correctly states/phases from the temperature and other data supplied in the question.

Question 29

Write a relevant equation or equations to explain each of the observations shown in the table below. (4 marks)

Observation	Explanatory equation/s			
The pH of a NaHSO₄ solution is 5				
A solution of Mg(OH) ₂ is basic				
A solution of Na_2HPO_4 is basic, while a solution of KH_2PO_4 is acidic				

Marking key

Observation	Explanatory equation/s			
The pH of a NaHSO₄ solution is 5	$\begin{array}{rcl} HSO_4^-(aq) &+ & H_2O(I) & \longrightarrow & SO_4^{2-}(aq) &+ & H_3O^+(aq) \text{ or} \\ & & HSO_4^-(aq) & \longrightarrow & H^+(aq) + & SO_4^{2-}(aq) \end{array}$			
A solution of Mg(OH) ₂ is basic	$\begin{array}{rcl} & & Mg(OH)_2 & \longrightarrow & Mg^{2+}(aq) & + & 2 & OH^-(aq) & or \\ & & & 2H_2O(I) & \longrightarrow & H_3O^+(aq) & + & OH^-(aq) & [OH^-] > \{H^+] & therefore & basic \end{array}$			
A solution of Na_2HPO_4 is basic, while a solution of KH_2PO_4 is acidic	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			

Description	Marks
1 mark for each equation	1–4
Question incorrectly answered	0
Question not attempted	-
Т	tal 4

NB Double arrows not required i.e. no penalty for single arrows.

Keywords

Hydrolysis

Question statistics

Statistics ID = CHE3-32 Number of attempts = 4490 Highest mark achieved = 4.00Lowest mark achieved = 0.00Mean = 1.77Standard deviation = 1.51Question difficulty = Moderate Correlation between question and section = 0.67

Question 29

Write a relevant equation or equations to explain each of the observations shown in the table below. (4 marks)

Observation	Explanatory equation/s
The pH of a NaHSO₄ solution is 5	
A solution of Mg(OH) ₂ is basic	
A solution of Na_2HPO_4 is basic, while a solution of KH_2PO_4 is acidic	

Notes

Observation	Explanatory equation/s
The pH of a NaHSO₄ solution is 5	HSO4 cop - H cop + SO4 cop
A solution of Mg(OH) ₂ is basic	Mg(OH) is to Mg 1 + 20 High
A solution of Na ₂ HPO ₄ is basic, while a solution of KH ₂ PO ₄ is acidic	H PO ² ₄ - cy1 + H2Ou) → H2PO ⁴ ₄ + O Hing H2PO ⁴ ₄ - cy1 + H2Ou) → H2PO ⁴ ₄ + O Hing

Excellent response 4/4 marks

Writes equations to show how solutions become acidic or basic.

Observation	Explanatory equation/s
The pH of a NaHSO₄	Na HS04 (aq) -> Natar + HS04 (aq) + acidic
solution is 5	HS04 (aq) + Hz9, -> S04 (aq) + Hz0+ < acidic
A solution of Mg(OH) ₂	Mg(OH) ₂ (aq) → Mg ²⁺ _(aq) + <u>20Hiaq</u>)
is basic	- hydroxide ions for med = bassic
A solution of Na ₂ HPO ₄ is basic, while a solution of KH ₂ PO ₄ is acidic	Hpoy (og) + H2Qi) = H2Poylogt OH (og) & basic H2Pq (og) + H2Qi) = Hpoylogt H30 (og) & acidic

Satisfactory response 2/4 marks

Writes two out of four correct equations.

 HPO_4^- and H_2PO_4 should be HPO_4^{-2-} and $H_2PO_4^{--}$.

Examiners' comments

This question was poorly done. Many candidates did not write a chemical equation, but rather a mathematical equation of some sort. Where chemical equations were given, they were very often not balanced, or were molecular rather than ionic. Although the aim was not to examine directly whether a student can balance an equation, the examiners still expected that the equations be balanced. Full marks were not awarded for incorrectly balanced equations, or equations that were slightly incorrect in some other way. Attention to detail is important.

Question 30

(12 marks)

Complete the table below by giving a brief description of a chemical test that could be used to distinguish between the substances listed. List the observations relating to the test for each of Substance 1 and Substance 2.

Substances to be distinguished		Description	Observation with	Observation
Substance 1	Substance 2	of chemical test	Substance 1	with Substance 2
butan-2-ol	2-methylpropan-2-ol			
zinc nitrate solution	zinc sulfate solution			
solid magnesium hydroxide	solid lead sulfate			
methanol	methanal			

Marking key

Substances to be distinguished		Description of Observation with		Observation
Substance 1	Substance 2	chemical test	Substance 1	with Substance 2
butan-2-ol	2-methylpropan-2-ol	Shake a small quantity of each substance with acidified $Cr_2O_7^{2^-}$ or acidified MnO_4^-	When shaken the $Cr_2O_7^{2^-}$ mixture changes from orange to green OR When shaken with MnO ₄ ⁻ will go from purple to colourless (or pale pink)	When shaken with the $Cr_2O_7^{2-}$ remains orange (no observable change acceptable) OR When shaken with MnO ₄ ⁻ remains purple (no observable change acceptable)
		Addition of sodium (Na)	Reacts faster	Reacts slower (do not accept no visible reaction)
zinc nitrate solution	zinc sulfate solution	Add a little Ba(NO ₃) ₂ or Pb(NO ₃) ₂ solution to each solution Accept Ba ²⁺ or Pb ²⁺ Accept anything that gives ppt	No observable reaction	A precipitate forms [white]
solid magnesium hydroxide	solid lead sulfate	Add a little of each solid to dilute HNO ₃ or H ₂ SO ₄ or HCl or CH ₃ COOH	Solid dissolves	Solid does not dissolve
		Addition of $H_2C_2O_4$	No visible reaction	[colourless] gas evolved
methanol	methanal	Shake each with a little acidified acetic acid Any carboxylic acid okay	Fruity smell develops; [(acetic) acid odour goes]	No fruity smell develops; [odour of (acetic) acid persists]
		Addition of sodium (Na)	Gas evolved	No visible reaction

Marking key (continued)

Description	Marks
1 mark for description of each test – must be acidified $Cr_2O_7^{2-}$ or MnO_4^- ; any suitable precipitation reaction acceptable for zinc solutions. (Any suitable chemical test – that adequately distinguishes one substance from the other – is acceptable.)	1–4
1 mark for each observation	1–8
Question incorrectly answered	0
Question not attempted	_
Total	12

NB (i) If $Cr_2O_7^{2-}$ or MnO_4^{-} not acidified, correct observations should be awarded (i.e. 2 out of 3 for the row).

(ii) If $Cr_2O_7^{2-}$ or MnO_4^{-} not acidified, but butan-2-ol solution turns brown, award marks (for test and observation).


(iii) Look out for any acceptable chemical test that is not listed here.

Keywords

Alcohols, Redox reactions, Precipitation (Chemistry)

Statistics ID = CHE3-33 Number of attempts = 4526 Highest mark achieved = 12.00 Lowest mark achieved = 0.00 Mean = 5.32 Standard deviation = 3.18 Question difficulty = Moderate Correlation between question and section = 0.78

Question statistics

Question 30 (12 marks)

Complete the table below by giving a brief description of a chemical test that could be used to distinguish between the substances listed. List the observations relating to the test for each of Substance 1 and Substance 2.

Substances to be distinguished		Description	Observation	Observation
Substance 1	Substance 2	of chemical test	with Substance 1	with Substance 2
butan-2-ol	tention'y αχιόλολ 2-methylpropan-2-ol (H3 H3(((H3 I ομ	add au dified dichno mate saution .	O range solution added to (olourless solution, Solution turns green.	Orange solution added to colour less solution solution remains orange.
zinc nitrate solution	zinc sulfate solution	Add barium hitrate solution.	The (Olaurless solution added to (olaurress Solution, NO Visible reartion.	colourless solution added to colourless solution. White precipitate formed.
solid magnesium hydroxide	solid lead sulfate	Add hydrochlorio accul .	(olounless Soluti on added to white solid. White solid dissolves.	(olourless solution added to white solid. No vizi ble Ilealdion.
methanol	methanal	ndd sodium hretal.	silver solid added to calourless saution said dissolves. Bubbling - (alourless, odourless,	Silver (olid of edded to colourkes solution. No visible realtion.

Notes

Excellent response 12/12 marks

Describes chemical tests to distinguish between substances.

evolved.

Candidate responses (continued)

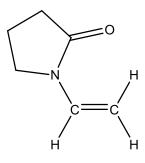
Substances	to be distinguished	Description	Observation	Observation
Substance 1	Substance 2	of chemical test	with Substance 1	with Substance 2
он C-C-C-C butan-2-ol Secondart	OH C-C-C 2-methylpropan-2-ol Torticry	addition ot acidified porassium permangara	colour charge from to purple to colourless	No Change (doesna react)
zinc nitrate solution	zinc sulfate solution	Addition of Pb^{2}^{\dagger}	No Precipitate	silvev precipitak
solid magnesium hydroxide $Mg(OH)_2$	solid lead sulfate PbSO4.	addition of an arid (HCI)	(orrosidh	502(g) is formed. colourless pungent gas. t corrosion
তম ' C methanol	ਿ – ਮ c – ਮ methanal	Add Water.	Most solutile -> dissolvp fastert.	idissolut at a slower rate

Notes

Satisfactory response 7/12 marks

Describes three chemical tests and one physical test.

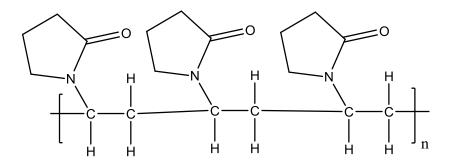
One chemical test has incorrect observations.


Examiners' comments

This was perhaps the most difficult question in Section Two, and was not well done. A common error was to not include acidified permanganate or dichromate in distinguishing between the two alcohols. In cases where no acidification was noted, marks were awarded if correct associated observations were given. Most candidates were able to describe a test to distinguish between zinc nitrate and zinc sulfate, although it is important to note that candidates must explicitly state addition of ions (e.g. barium ions or lead ions) in such questions (rather than simply 'barium' or 'lead') to be awarded full marks. It is only through the use of such detail that markers can be sure of a candidate's understanding of the chemistry. The second half of the table in this question was, overall, rather poorly completed.

Question 31 (2 marks)

Polyvinylpyrrolidone is a polymer with a wide range of applications including as a binder in tablets and hair styling agents. It is made from the monomer shown below.


Question statistics

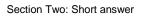
Statistics ID = CHE3-34 Number of attempts = 4468 Highest mark achieved = 2.00 Lowest mark achieved = 0.00 Mean = 1.29 Standard deviation = 0.78 Question difficulty = N/A Correlation between question and section = 0.58

31(a)

Draw three units in the polymer formed from this monomer. (1 mark)

Marking key

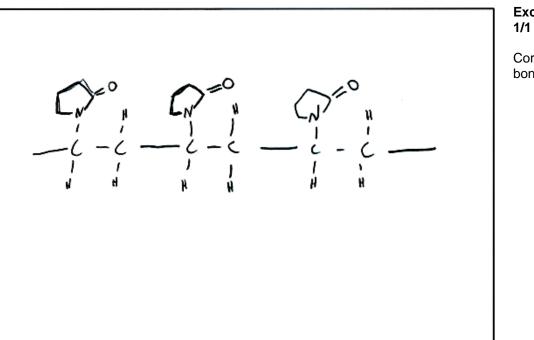
Description	Marks
3 units correctly combined required to gain mark. ("n" and brackets not needed)	1
Question incorrectly answered e.g. Hs on the ends	0
Question not attempted	_
Total	1



Keywords

Polymerisation

Question statistics


Statistics ID = CHE3-35 Number of attempts = 4240 Highest mark achieved = 1.00 Lowest mark achieved = 0.00 Mean = 0.56Standard deviation = 0.50Question difficulty = Moderate Correlation between question and section = 0.52

31(a)

Draw three units in the polymer formed from this monomer. (1 mark)

Notes

Excellent response 1/1 mark

Correctly breaks the double bond to form the polymer.

31(b)

What type of polymerisation reaction occurs to form the polymer from the above monomer? (1 mark)

Marking key

Description	Marks
Addition	1
Question incorrectly answered	0
Question not attempted	-
Total	1

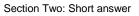
Keywords

Polymerisation

Question statistics

Statistics ID = CHE3-36 Number of attempts = 4266 Highest mark achieved = 1.00 Lowest mark achieved = 0.00 Mean = 0.79Standard deviation = 0.40Question difficulty = Easy Correlation between question and section = 0.38

31(b)


What type of polymerisation reaction occurs to form the polymer from the above monomer? (1 mark)

Notes

addition polymerisation

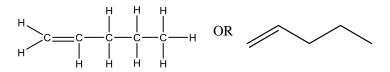
Excellent response 1/1 mark

Recognises that question 31(a) is an example of addition polymerisation.

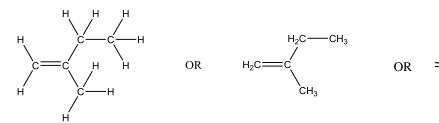
Question 32 (13 marks)

Question statistics

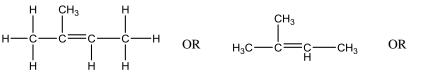
Statistics ID = CHE3-37 Number of attempts = 4734 Highest mark achieved = 13.00 Lowest mark achieved = 0.00 Mean = 8.75Standard deviation = 3.26Question difficulty = N/A Correlation between question and section = 0.79


32(a)

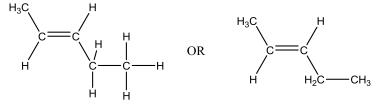
Draw the structure for, and write the name of, any five straight chain isomers for the compounds with the molecular formula C_5H_{10} . Show all atoms in the structures. (10 marks)

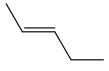


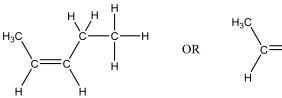
Government of Western Australia School Curriculum and Standards Authority

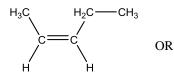

Marking key

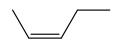
Name: pent-1-ene or 1-pentene



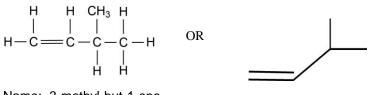

Name: 2-methyl-but-1-ene or 2-methyl-1-butene


Name: 2-methyl-but-2-ene or 2-methyl-2-butene





OR


Name: trans-pent-2-ene OR trans-2-pentene

Name: cis-pent-2-ene OR cis-2-pentene

Name: 3-methyl-but-1-ene

Marking key (continued)

Description	Marks
1 mark for each correct structure. Condensed structures acceptable. Award 4 marks for structures if H atoms consistently left off but structure is otherwise correct.	1–5
1 mark for each correct name	1–5
Question incorrectly answered or not attempted	0
Total	10

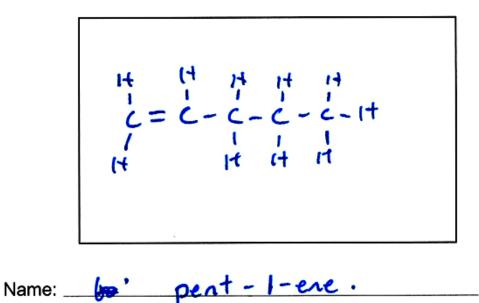
- NB (i) If structure is incorrect (e.g. cyclic structure), but name is correct, award one mark. Must be C_5H_{10} .
 - (ii) If there is some systematic error in naming, deduct one mark.

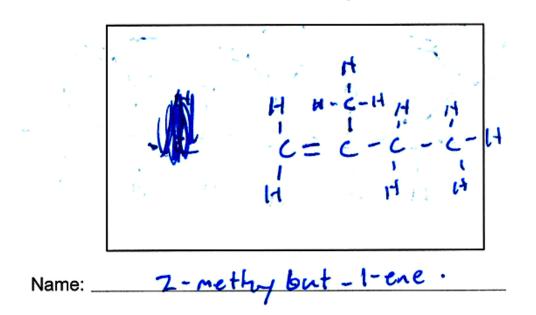
Keywords

Isomerism, Organic compounds

Question statistics

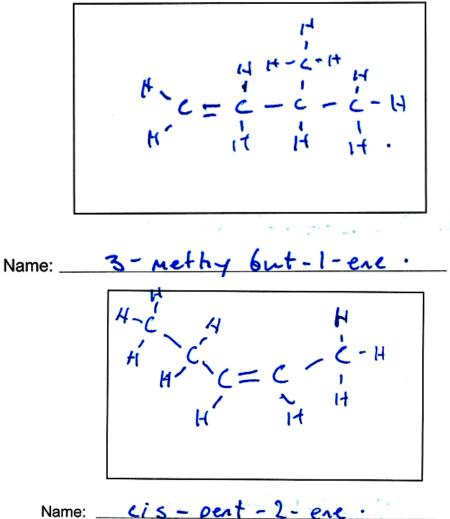
Statistics ID = CHE3-38 Number of attempts = 4730 Highest mark achieved = 10.00 Lowest mark achieved = 0.00 Mean = 6.73 Standard deviation = 2.56 Question difficulty = Moderate Correlation between question and section = 0.70

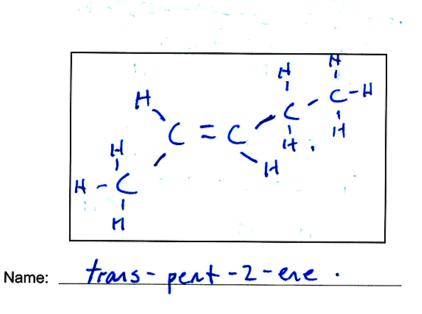

32(a)


Draw the structure for, and write the name of, any five straight chain isomers for the compounds with the molecular formula C_5H_{10} . Show all atoms in the structures. (10 marks)

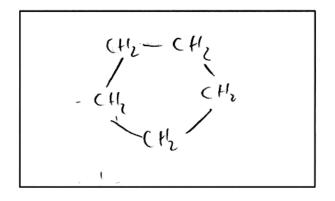
Excellent response 10/10 marks

Draws and names five straight chained isomers of C_5H_{10} .

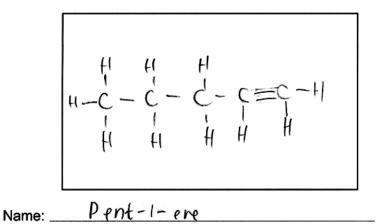




Candidate responses (continued)


Notes

Name: <u>Lis-pent</u>



Candidate responses (continued)

(yclopentare.

Name: __

$$H = C - C - C = C - C - H$$

 $H = H = H$
 $H = H = H$

Name: <u>cis pent -2-ere</u>

Notes

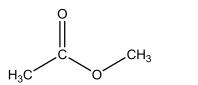
Satisfactory response 7/10 marks

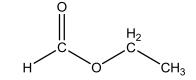
Draws and names three straight chained isomers of C_5H_{10} .

One C_5H_{10} isomer is cyclic, but correctly named. The other is a four carbon chain.

32(b)

An organic compound is known to be an ester. Its molar mass is 74 g mol^{-1} .


Question statistics

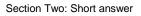

Statistics ID = CHE3-39 Number of attempts = 4426 Highest mark achieved = 3.00Lowest mark achieved = 0.00Mean = 2.17Standard deviation = 1.06Question difficulty = N/A Correlation between question and section = 0.62

32(b)(i)

Draw the structural formula for the compound. Show all atoms in the structure. (1 mark) $% \left(1 \right) = 0$

Marking key

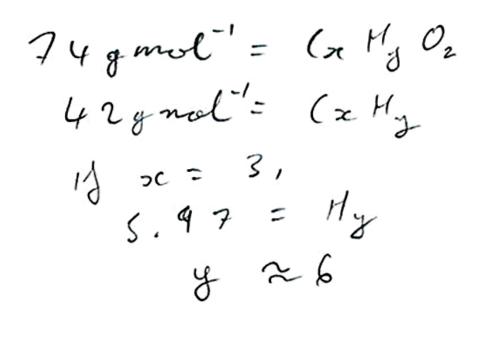
Description	Marks
1 mark for a correct structure. Condensed structure acceptable.	1
Question incorrectly answered	0
Question not attempted	-
Total	1


OR

Keywords

Molecular structure

Question statistics


```
Statistics ID = CHE3-40
Number of attempts = 4412
Highest mark achieved = 1.00
Lowest mark achieved = 0.00
Mean = 0.81
Standard deviation = 0.40
Question difficulty = Easy
Correlation between question
and section = 0.51
```


32(b)(i)

Draw the structural formula for the compound. Show all atoms in the structure. (1 mark)

Notes

M

Excellent response 1/1 mark

Uses the molar mass to calculate the number of carbon atoms and draws a three carbon ester.

32(b)(ii)

Write the name for the compound you have drawn. (1 mark)

Marking key

Description	Marks
methyl ethanoate OR ethyl methanoate	1
Question incorrectly answered	0
Question not attempted	-
Total	1

NB Accept methyl acetate

Keywords

Organic compounds

Question statistics

Statistics ID = CHE3-41 Number of attempts = 4203 Highest mark achieved = 1.00 Lowest mark achieved = 0.00 Mean = 0.72Standard deviation = 0.45Question difficulty = Moderate Correlation between question and section = 0.48

32(b)(ii)

Write the name for the compound you have drawn. (1 mark)

Methyl ethanoate

Notes

Excellent response 1/1 mark

Correctly names the ester from question 32(b)(i).

32(b)(iii)

What is the IUPAC name for a carboxylic acid that has the same molecular formula as the ester above? (1 mark)

Marking key

Description	Marks
propanoic acid	1
Question incorrectly answered	0
Question not attempted	-
Total	1

Keywords

Organic compounds

Question statistics

Statistics ID = CHE3-42 Number of attempts = 4132 Highest mark achieved = 1.00Lowest mark achieved = 0.00Mean = 0.73Standard deviation = 0.45Question difficulty = Moderate Correlation between question and section = 0.39

32(b)(iii)

What is the IUPAC name for a carboxylic acid that has the same molecular formula as the ester above? (1 mark)

Notes

Propanoic arid

Excellent response 1/1 mark

Names the carboxylic acid with the same molecular formula $(C_3H_6O_2)$ as the ester.

Examiners' comments

A number of candidates presented cyclic structures in Part (a); candidates should be reminded to read the question carefully and thoroughly. Some had difficulty in applying rules of nomenclature to correctly drawn structures.

Question 33

Below are the structures for the amino acid valine under different pH conditions. In the spaces provided, give the approximate pH range (acidic, basic or neutral) under which each valine structure would exist. **(3 marks)**

Valine structure	pH range
$H_{3}C$ H	
$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ H_{2} $H_{3}C$ H_{2}	
$H_{3}C$	

Marking key

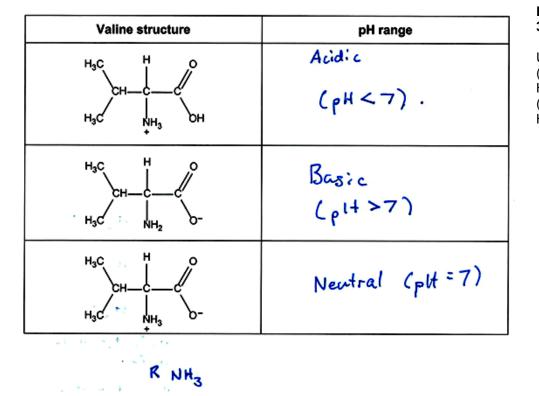
Valine structure	pH range
H_{3C} H_{3C} H_{3C} H_{3C} H_{3C} H_{3C} H_{3}	acidic (pH < 7) Or any range of acidic values
$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ H_{2} $H_{3}C$ H_{2}	basic (pH > 7) Or any range of basic values
$H_{3}C$ H	neutral (pH ~ 7)

Description	Marks
1 mark each	1–3
Question incorrectly answered	0
Question not attempted	_
Т	Total 3

NB Either words or pH range acceptable.

Keywords

Acids


Question statistics

Statistics ID = CHE3-43 Number of attempts = 4667 Highest mark achieved = 3.00Lowest mark achieved = 0.00Mean = 2.13Standard deviation = 1.11Question difficulty = Easy Correlation between question and section = 0.41

Question 33

Below are the structures for the amino acid valine under different pH conditions. In the spaces provided, give the approximate pH range (acidic, basic or neutral) under which each valine structure would exist. (3 marks)

Notes

Excellent response 3/3 marks

Understands that an acidic (lose H^+) solution will give a H^+ to Valine and a basic (gain H^+) solution will take a H^+ from Valine.

Candidate responses (continued)

Notes

Satisfactory response 1/3 marks

Correctly predicts the neutral solution.

Valine structure	pH range
	Basil
	Acidic
H ₃ C H O CH C CH C O H ₃ C NH ₃ O-	Neutral

Question 34

Examine the following data for some Group 16 hydrides.

Group number	Hydride	Period	Melting point (°C)
	H ₂ O	2	0
16	H ₂ S	3	-86
10	H ₂ Se	4	-66
	H ₂ Te	5	-49

Complete the table below by identifying which one or more of these Group 16 hydrides matches each of the descriptions given.

(7 marks)

Note that all hydrides are assumed to be pure samples.

Description	Hydride/hydrides (formula or name)
Hydride with the strongest intramolecular forces	
Hydride with the strongest intermolecular forces	
Hydride/hydrides with hydrogen bonding	
Hydride/hydrides with dipole-dipole bonding	
Hydride/hydrides with dispersion forces	
Hydride with strongest dispersion forces	
Hydride with weakest dispersion forces	

Marking key

Description	Hydride/hydrides (formula or name)
Hydride with the strongest intramolecular forces	H ₂ O
Hydride with the strongest intermolecular forces	H ₂ O
Hydride/hydrides with hydrogen bonding	H ₂ O
Hydride/hydrides with dipole-dipole bonding	H ₂ O, H ₂ S, H ₂ Se, H ₂ Te or ALL
Hydride/hydrides with dispersion forces	H ₂ O, H ₂ S, H ₂ Se, H ₂ Te or ALL
Hydride with strongest dispersion forces	H ₂ Te
Hydride with weakest dispersion forces	H ₂ O

Description	Marks
1 mark for each cell	1–7
Question incorrectly answered	0
Question not attempted	-
Total	7

Keywords

Molecular forces

Question statistics

Statistics ID = CHE3-44 Number of attempts = 4720 Highest mark achieved = 7.00 Lowest mark achieved = 0.00 Mean = 4.74Standard deviation = 1.60 Question difficulty = Easy Correlation between question and section = 0.62

Question 34

Examine the following data for some Group 16 hydrides.

Group number	Hydride	Period	Melting point (°C)
	H ₂ O	2	0
16	H ₂ S	3	-86
10	H ₂ Se	4	-66
	H ₂ Te	5	-49

Complete the table below by identifying which one or more of these Group 16 hydrides matches each of the descriptions given.

(7 marks)

Note that all hydrides are assumed to be pure samples.

Description	Hydride/hydrides (formula or name)
Hydride with the strongest intramolecular forces	420
Hydride with the strongest intermolecular forces	H20
Hydride/hydrides with hydrogen bonding	420
Hydride/hydrides with dipole-dipole bonding	H20, H25, H258, H2TE
Hydride/hydrides with dispersion forces	H20, H25, H25e, H2Te
Hydride with strongest dispersion forces	Hzte
Hydride with weakest dispersion forces	H20

2: H . 2

Notes

Excellent response 7/7 marks

Gives correct examples of intermolecular forces and their relative strengths.

H. s starfesse

Candidate responses (continued)

Description	Hydride/hydrides (formula or name)
Hydride with the strongest intramolecular forces	H25
Hydride with the strongest intermolecular forces	H ₂ 0
Hydride/hydrides with hydrogen bonding	HZO
Hydride/hydrides with dipole-dipole bonding	H25, H20, H2Se, H2Te
Hydride/hydrides with dispersion forces	H25
Hydride with strongest dispersion forces	HzTe
Hydride with weakest dispersion forces	Az S

Notes

Satisfactory response 4/7 marks

Provides four correct examples of intermolecular forces and their relative strengths.

Question 35

(7 marks)

A nickel-cadmium cell consists of a positive nickel(III) oxide-hydroxide, NiO(OH), electrode and a negative metallic cadmium electrode plate. The following processes occur during discharge:

- (i) metallic cadmium reacts in the presence of hydroxide ions to produce cadmium(II) hydroxide; and
- (ii) nickel(III) oxide-hydroxide reacts in the presence of water to produce nickel(II) hydroxide and hydroxide ions.

Question statistics

Statistics ID = CHE3-45 Number of attempts = 4681Highest mark achieved = 7.00Lowest mark achieved = 0.00Mean = 3.11Standard deviation = 1.81Question difficulty = N/A Correlation between question and section = 0.70

35(a)

Write the half-equations for the reactions occurring at the anode and cathode and the overall redox equation for the Ni-Cd cell.

(3 marks)

Anode half-equation	
Cathode half-equation	
Overall redox equation	

Marking key

Anode half-equation	Cd + 2 OH ⁻ \rightarrow Cd(OH) ₂ + 2 e ⁻
Cathode half-equation	NiO(OH) + H ₂ O + $e^- \rightarrow Ni(OH)_2$ + OH ⁻
Overall redox equation	Cd + 2 NiO(OH) + 2 H ₂ O \rightarrow Cd(OH) ₂ + 2 Ni(OH) ₂

Description		Marks
1 mark for anode reaction		1
1 mark for cathode reaction		1
1 mark for overall equation (i.e. correct with reference to anode and cathode)		1
Question incorrectly answered		0
Question not attempted		_
	Total	3

If anode and cathode equations are reversed but otherwise correct award 1 mark out of the possible 2 marks for the half- equations.

Keywords

Redox reactions, Electrochemical reactions, Electrolytic cells

Question statistics

Statistics ID = CHE3-46 Number of attempts = 4630 Highest mark achieved = 3.00 Lowest mark achieved = 0.00 Mean = 1.26 Standard deviation = 0.91 Question difficulty = Moderate Correlation between question and section = 0.52

35(a)

Write the half-equations for the reactions occurring at the anode and cathode and the overall redox equation for the Ni-Cd cell.

(3 marks)

Oxidation	Anode half-equation	$Cd_{(s)} + 20H_{(aa)}^{-} \rightarrow Cd_{(0H)}^{-} + 2e_{(aa)}^{-}$
		$\operatorname{NiO(OH)}_{(j)} + \operatorname{H}_{2}O_{(i)} + e^{-} \rightarrow \operatorname{Ni}(OH)_{2}(j) + OH_{(4k)}^{-}$
	Overall redox equation	$Cd_{(i)} + 2NiO(OH)_{(i)} + 2H_2O_{(i)} \rightarrow Cd(OH)_{2(i)} + 2Ni(OH)_{2(i)}$

Notes

Excellent response 3/3 marks

Constructs half-equations and combines them to give an overall redox equation.

Anode half-equation	Cd(1) +> Cd2+ 2e-	
Cathode half-equation	$\mathcal{N}: O(OH) + H_2 O + e^{-} \rightarrow \mathcal{N}: (OH)_2 + OH^{-}$ $\mathcal{N}: \frac{2+}{1-2e^{-}} \mathcal{N}: (3)$	
Overall redox equation	$(d_{(1)} + 2N; O(OH) + 2H_2O \longrightarrow (d^{2t} + 2N; (OH)_2 + 2$	OH

Satisfactory response 2/3 marks

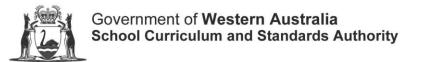
Constructs one correct halfequation and combines the half-equations to give an overall redox equation.

35(b)

The electrolyte in the Ni-Cd cell is usually a solution of potassium hydroxide. State the role of an electrolyte in an electrochemical cell.

(1 mark)

Marking key


Description	Marks
To enable flow of ions/complete the cell circuit allowing charge flow	1
Question incorrectly answered	0
Question not attempted	_
Tota	1 1

Keywords

Electrolytic cells, Electrolytes

Question statistics

Statistics ID = CHE3-47 Number of attempts = 4474 Highest mark achieved = 1.00Lowest mark achieved = 0.00Mean = 0.57Standard deviation = 0.49Question difficulty = Moderate Correlation between question and section = 0.29

35(b)

The electrolyte in the Ni-Cd cell is usually a solution of potassium hydroxide. State the role of an electrolyte in an electrochemical cell.

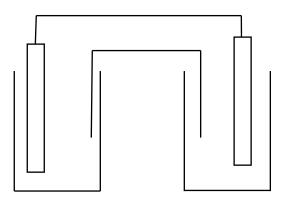
(1 mark)

Notes

Excellent response 1/1 mark

To allow ion transfer between the electrodes.

Correctly states the role of the electrolyte in an electrochemical cell.


35(c)

The standard reduction potential for cadmium metal is -0.4 V. Explain the role of the hydrogen half-cell in determining this value. Comment on the significance of the negative value. You may use diagrams to aid your explanation. (3 marks)

Marking key

Description	Marks
1 mark for recognition that the hydrogen half-cell is assigned an E° of 0 V or reference cell (or similar)	1
1 mark for recognition that cadmium half-cell E° is determined relative to the hydrogen half-cell.	1
1 mark for recognition that the negative value means that the cadmium half-cell is anodic relative to the hydrogen half-cell (OR electrons flow from the cadmium to the hydrogen cell or some other version)	1
Question incorrectly answered	0
Question not attempted	_
Total	3

An example of a possible diagram

Keywords

Redox reactions

Question statistics

Statistics ID = CHE3-48 Number of attempts = 4036 Highest mark achieved = 3.00 Lowest mark achieved = 0.00 Mean = 1.53 Standard deviation = 0.99 Question difficulty = Moderate Correlation between question and section = 0.56

35(c)

The standard reduction potential for cadmium metal is -0.4 V. Explain the role of the hydrogen half-cell in determining this value. Comment on the significance of the negative value. You may use diagrams to aid your explanation.

(3 marks)

The hydrogen half cell is the relative
benchmark for all standard veduction potentials,
We measure the ent of a dedroclamical cell
We measure the ent of a dedrochemical cell with the hydrogen half cell and the older cell
a wat in find the reduction potential of (in this
case the Col halt cell). The negative symbol just means that col is a stranger reducing agant than Hz. the and that is a complete cell with the hydrogen halt cell and the Col half cell, the
means that ed is a stranger reducing agait
then H2 the and that is a complete cell with
the hydrogen hale cell and the col half cell, the
Cd helt cell will be the crock-

Notes

Excellent response 3/3 marks

Explains the standard and comparative roles of the hydrogen half-cell and the significance of negative values in the standard reduction potential table.

MThe hydrogen half cell is what all the S.R. potentials are cased on. A negative value indicates that hydrogen was giving electrons

Satisfactory response 2/3 marks

Explains the significance of negative values.

The standard and comparative roles of the hydrogen half-cell require more detail.

Examiners' comments

This question was rather poorly done. Candidates should be encouraged to thoroughly and carefully read the question. The reactants and products for each of the half equations in Part (a) are clearly given in the explanatory information for this question, yet many candidates apparently attempted to find half equations that 'matched' in the Standard Reduction Potential table given in the data sheet.

Chemistry Stage 3

Section Three: Extended answer

80 marks

Weighted section statistics

Note: Raw section total marks = 80 Weighted section total marks = 40 Statistics ID = CHE3-S03 Number of attempts = 4731 Highest mark achieved = 40.00 Lowest mark achieved = 0.00 Mean = 24.46 Standard deviation = 9.05 Correlation between section and exam = 0.95

This section contains six (6) questions. You must answer all questions.

Where questions require an explanation and/or description, marks are awarded for the relevant chemical content and also for coherence and clarity of expression.

Final answers to calculations should be expressed to three (3) significant figures and include appropriate units.

For numerical answers, a 1% tolerance in answers is acceptable.

Suggested working time: 70 minutes

Examiners' comments for this section

Question 36 was the least difficult, while Question 41 was the most difficult.

Question 36

Sevoflurane is a gaseous compound (at room temperature) used for inducing and maintaining general anaesthesia. It contains carbon, hydrogen, oxygen and fluorine.

Analysis of a 1.6328 g sample of sevoflurane yielded, on combustion, 866.0 mL of carbon dioxide at 50°C and 101.3 kPa and 0.220 g of water. The fluorine was released as hydrogen fluoride and absorbed by alkaline solution, revealing 5.71×10^{-2} mole of hydrogen fluoride. Determine the empirical formula of sevoflurane. (10 marks)

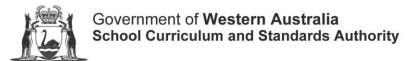
Marking key

Description	Marks
$n(C) = n(CO_2) = \frac{PV}{RT} = \frac{101.3 \times 0.866}{8.315 \times 323} = 3.266 \times 10^{-2} \text{ mol}$	1
$m(C) = 12.01 \times 3.266 \times 10^{-2} = 0.3923 g$	1
$n(H) = 2 \times n(H_2O) = 2 \times \frac{0.220}{18.016} = 2.44 \times 10^{-2} \text{ mol}$	1
$m(H) = 1.008 \times 2.44 \times 10^{-2} = 2.462 \times 10^{-2} g$	1
$m(F) = 19.00 \times 5.71 \times 10^{-2} = 1.085 g$	1
$m(O) = 1.6328 - (0.3923 + 2.462 \times 10^{-2} + 1.085) = 0.13099 g$	1
$n(O) = \frac{0.13099}{16.00} = 8.187 \times 10^{-3} \text{ mol}$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1–2
Thus EF is $C_4H_3OF_7$	1
Question incorrectly answered	0
Question not attempted	_
Tota	al 10

NB: Any appropriate logic leading to the correct answer is acceptable.

NB: $C_7H_{18}OF_{12}$ = rounding error (9 marks)

If reasonable attempt to produce whole numbers from EF developed from H from water and HF then full marks


Keywords

Chemical formula

Question statistics

Statistics ID = CHE3-49 Number of attempts = 4675 Highest mark achieved = 10.00 Lowest mark achieved = 0.00 Mean = 7.90 Standard deviation = 2.70 Question difficulty = Moderate Correlation between question and section = 0.64

Notes

Candidate responses

Question 36

Sevoflurane is a gaseous compound (at room temperature) used for inducing and maintaining general anaesthesia. It contains carbon, hydrogen, oxygen and fluorine.

Analysis of a 1.6328 g sample of sevoflurane yielded, on combustion, 866.0 mL of carbon dioxide at 50°C and 101.3 kPa and 0.220 g of water. The fluorine was released as hydrogen fluoride and absorbed by alkaline solution, revealing 5.71×10^{-2} mole of hydrogen fluoride. Determine the empirical formula of sevoflurane. (10 marks)

$n(c) = n(co_{c})$	but sime PV = nRT,	Excellent response 10/10 marks
= (PV)	/ (RT)	
= (101.3	× 0.866)/(8.315×(273.1+50))	Determines the empirical formula by calculating
= 0.03		moles, masses and mole ratios of carbon, hydrogen, fluorine and oxygen atoms
n = m =>	m(c) = nM	
M	= 0.03265× 12.01	
	= 0.3922g	
n(H) = 2rnCl	(20)	
= 2 x ,	m	
1	Ч	
= 2x 0	22	
2.	1.00 8+16	

Candidate responses (continued)

Notes

.

n(H) = (02442			
n 2 m = ?	m(H) = ,	r M		
M		. 02442 = 1.0	008	
		. 02462g		
n(F) =	n(HF) = ;	5.71 210-2		
n = m = M	> m(F) = n	$M = S.71 \times 1$	10 - 19 =	1.085g
M				
(m)	((1)	1.11	(6)
	n (sample)			
	= 1.6329 - 0.3922 - 0.02462 - 1.085			
	0.13/0g m = 0.131	. 0.0	0 9186	
	M 16		0 1100	
	с	ы	O	F
moles	0.03265	0.02442	0.00 \$ 186	0.0571
by 0.008186	3.989	2.983	1.000	6. 975
	≈ ४	23	21	27
Empirin	e Jormula	in Cy	M3 OFT.	

Candidate responses (continued)

CHOF + 02 -	CO2 +	H,O + H	F	(0)= 0.22 18.016
1.6328	۶ Gunl	eng .	9 0.0371 mel	= 0.01221 mol
	50'(5		
n(c): RT	м(H): 2+ 0.22 Bais	n(F)	0.0971-1
= 101.3×0.866 8315×223.1		: 0.0244	Zmol	
= 0.03265 mal				
C	14	0	F	
0.03265	0.02442	0.01221	0.0570	
0.01221	0.01221	0.01221	0.01221	
: 267	= Z	:1	: 4.67	
x3 = 8	: 6	= 3	= 14	

Notes

Satisfactory response 6/10 marks

Uses the correct method, but the number of moles of oxygen is incorrect.

Needs to calculate the masses of carbon, hydrogen and fluorine to find the mass of oxygen and then the number of moles of oxygen.

Examiners' comments

Some candidates misinterpreted this question, with a number concluding that the hydrogen component of hydrogen fluoride originated in the sevoflurane. Given that the wording of the question perhaps lent itself to this misinterpretation, candidates were not penalised. The question was generally well done.

Question 37 (13 marks)

The percentage of manganese in steel needs to be monitored carefully. To determine this, a 5.31 g sample of steel was dissolved in concentrated acid and the manganese oxidised to permanganate ion, MnO_4^- . The volume of this solution was made up to 100.0 mL in a volumetric flask.

The concentration of permanganate ion was determined by titration against a standard solution of oxalic acid. The oxalic acid solution was prepared by dissolving 2.42 g of oxalic acid dihydrate ($H_2C_2O_4$. $2H_2O$) in a small volume of water, which was then made up to a final volume of 250.0 mL in a volumetric flask.

A 20.00 mL aliquot of the standard oxalic acid solution was transferred into a conical flask and acidified with some sulfuric acid. The permanganate solution was then titrated against this 20.00 mL aliquot of oxalic acid solution. This was repeated three times. The results are shown in the table below.

The balanced equation for the reaction between oxalic acid and permanganate ion is as below.

 6 H^{+} + 2 MnO₄⁻ + 5 H₂C₂O₄ \rightarrow 2 Mn²⁺ + 10 CO₂ + 8 H₂O

	1	2	3	4
Final reading (mL)	9.54	17.59	25.57	33.64
Initial reading (mL)	0.97	9.54	17.59	25.57
Titre volume (mL)				

Question statistics

Statistics ID = CHE3-50 Number of attempts = 4661 Highest mark achieved = 13.00 Lowest mark achieved = 0.00 Mean = 7.51 Standard deviation = 3.69 Question difficulty = N/A Correlation between question and section = 0.79

37(a)

Calculate the concentration of the standard oxalic acid solution. (3 marks)

Marking key

Description	Marks
$M(H_2C_2O_4 \cdot 2H_2O) = 126.068 \text{ g mol}^{-1}$	1
$n(H_2C_2O_4) = \frac{2.42}{126.068} = 1.9196 \times 10^{-2} \text{ mol}$	1
$c(H_2C_2O_4) = \frac{1.9196 \times 10^{-2}}{0.250} = 7.68 \times 10^{-2} \text{ mol } \text{L}^{-1}$	1
Question incorrectly answered	0
Question not attempted	_
Total	3

Keywords

Titration

Question statistics

Statistics ID = CHE3-51 Number of attempts = 4606Highest mark achieved = 3.00Lowest mark achieved = 0.00Mean = 2.34Standard deviation = 0.91Question difficulty = Easy Correlation between question and section = 0.51

37(a)

Calculate the concentration of the standard oxalic acid solution. (3 marks)

М

Notes

Excellent response 3/3 marks

Calculates the number of moles and then the concentration, using the correct chemical relationships.

$n(H_2(_{2}O_4, 2H_{2}O) = H$	M(H2(204.24)0)= 126.068 9 mol-1
= 126.068)
= 0.019196 mol	
$\mathcal{N}(H_{2}(_{2}O_{4}) = \mathcal{N}(H_{2}(_{2}O_{4} \cdot 2H_{2}O) \times)$	
= 0.019196 mol	
$((H_1({}_2Oh) = \frac{N}{N})$	
- 0.019196	
0.25	
= 0.0768 mol L ⁴ (35.4.)

N(Hylycy-ZHZO

N= 0-02198

02198 25

molil C= 8.79 XIA

Satisfactory response 2/3 marks

Calculates the number of moles, using the incorrect molar mass.

Uses the correct method to calculate the concentration.

37(b)

Determine the percentage of manganese in the original sample of steel. (8 marks)

Marking key

Description	Marks
$n(H_2C_2O_4) = 7.68 \times 10^{-2} \times 0.02 = 1.536 \times 10^{-3} mol$	1
$n(MnO_4^{-}) = \frac{2}{5} \times n(H_2C_2O_4) = 6.144 \times 10^{-4} mol$	1
$V_{av}(MnO_4^{-}) = 8.033 \text{ mL}$	1
*n(MnO ₄ ⁻) in 100 mL = $\frac{6.144 \times 10^{-4}}{8.033 \times 10^{-3}} \times 0.100 = 7.648 \times 10^{-3}$ mol	1–2
Thus n(Mn) in sample = 7.648×10^{-3} mol	1
$m(Mn) = 7.648 \times 10^{-3} \times 54.94 = 0.4202 \text{ g}$	1
$\%Mn = \frac{0.4202}{5.31} \times 100 = 7.91\%$	1
Question incorrectly answered	0
Question not attempted	-
Total	8

*Calculation of the concentration of the MnO_4^- solution and then calculation of $n(MnO_4^-)$ in 100 mL is also acceptable.

Keywords

Titration

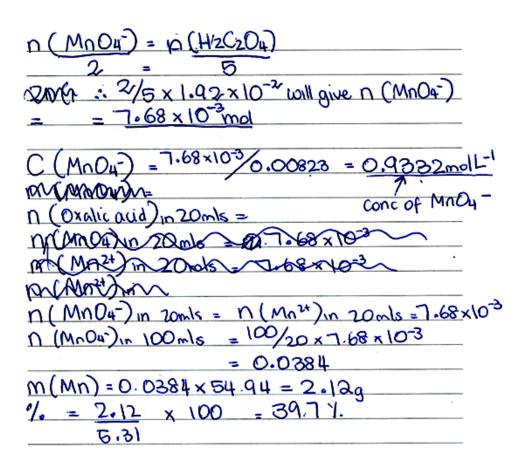
Question statistics

Statistics ID = CHE3-52 Number of attempts = 4380 Highest mark achieved = 8.00Lowest mark achieved = 0.00Mean = 5.04Standard deviation = 2.65Question difficulty = Moderate Correlation between question and section = 0.74

37(b)

Determine the percentage of manganese in the original sample of steel. (8 marks)

Notes


5.319 average titre volum	$e = \frac{8.05 + 7.98 + 6.07}{3}$
NUDU-	= 8.03 ml
100 mL	
$\sqrt{8.03}$ mL $n(H_2(204))$	in 20m L = CV
20 mL H2(20 4	= 0.0768 (20 X 10-3)
0.0768 moll-1	= 0.001536 mol
$n(MnOy^{-})$ in 8.03ml = $\frac{2}{5}$ X $n(H_{2})$	204)
= 6.144 × 10-1	^t mol
$n(NnO4^{-})$ in looml = $\frac{100}{8.03} \times 6$.	144 x 10 ⁻⁴
11 X 20.F =	
$n(Mn) = n(MnO_{4}) \times 1$	
= 7.65 X 10 ⁻³ mol	
m(Mn) = nM	
= 7.65 × 10 ⁻³ (54.94)	
= 0.4209	
$1. Mn = \frac{0.42}{5.31} \times 100$	
= 7.92 %. (35.4	.)

Excellent response 8/8 marks

Correctly completes each step to determine the percentage of manganese.

Candidate responses (continued)

Notes

Satisfactory response 5/8 marks

Uses the equation ratio correctly with an incorrect number of moles of oxalic acid.

Calculates the titre volume, but incorrectly calculates the number of moles of manganese.

Uses the correct method to calculate the mass and percentage of manganese.

37(c)

Suggest the most suitable indicator for this titration and describe the colour change that would be observed during the titration.

(2 marks)

Indicator	
Description of colour change	

Marking key

Indicator	No indicator needs to be added; MnO_4^- acts as indicator
Description of colour change	Solution will turn from colourless to pale pink

Description	Marks
Recognition that no indicator needs to be added	1
Solution will turn from colourless to pale pink (i.e., that is the end point)	1
Question incorrectly answered	0
Question not attempted	-
Total	2

NB: "Self indicating" is acceptable

Keywords

Indicator chemicals

Question statistics

Statistics ID = CHE3-53 Number of attempts = 4307 Highest mark achieved = 2.00 Lowest mark achieved = 0.00 Mean = 0.49Standard deviation = 0.71Question difficulty = Difficult Correlation between question and section = 0.36

Notes

Candidate responses

37(c)

Suggest the most suitable indicator for this titration and describe the colour change that would be observed during the titration.

(2	marks)
----	--------

Indicator	No indicator needed (Ma Dy is self indication)	Excellent response 2/2 marks
Description of colour change	Colonders solution turns pace ping	Recognises that no indicator is needed; MnO ₄ will act as the indicator.
		Correctly notes the observed colour change in the flask.

Indicator	no indicator recessarry	
Description of colour change	Mady- (purple) = Mn21	(pale ains)
		y /

Satisfactory response 1/2 marks

Recognises that no indicator is needed; MnO_4^- will act as the indicator.

Incorrectly notes the observed colour change in the flask.

Examiners' comments

Errors were commonly made with dilutions, and to use a titration equation involving manganese rather than the one provided involving the permanganate ion. Again, careful reading of the question would have reduced the risk of this error.

Question 38 (20 marks)

The sandy soils of Western Australia are deficient in several elements essential to the growth of plant life. One of these elements is nitrogen, and there are a number of nitrogen-containing fertilisers available on the market. Urea, $CO(NH_2)_2$, is a commonly-used fertiliser that contains nitrogen. Urea is produced as crystals by the reaction of ammonia with carbon dioxide. Water is also produced in the reaction. The equation for this reaction is shown below.

 $2 \text{ NH}_3 + \text{CO}_2 \rightarrow \text{CO}(\text{NH}_2)_2 + \text{H}_2\text{O}$

A reaction vessel designed for the synthesis of urea is operated at 200°C and 148 atmospheres. It has a total volume capacity of 5000 L, and ammonia and carbon dioxide are fed into it in batches so that ammonia occupies 62.0% of the volume and carbon dioxide occupies the remainder.

Question statistics

Statistics ID = CHE3-54 Number of attempts = 4663 Highest mark achieved = 20.00 Lowest mark achieved = 0.00 Mean = 14.03 Standard deviation = 5.10 Question difficulty = N/A Correlation between question and section = 0.83

38(a)

Determine the limiting reagent for the reaction under the above operating conditions. Show **all** your workings. (5 marks)

Marking key

Description	Marks
$P = 148 \times 101.3 = 1.49924 \times 10^4 kPa$ (conversion of atm to kPa; alternatively students may use R = 0.08206 in the next step and be awarded 1 mark for remembering it)	1
Calculation of total number of moles:	
$n_{total} = \frac{PV}{RT} = \frac{1.49924 \times 10^4 \times 5000}{8.315 \times 473} = 1.906 \times 10^4 \text{ mol}$	1
$n(NH_3) = 0.62 \times 1.906 \times 10^4 = 1.182 \times 10^4 mol$	1–3
$n(CO_2) = 0.38 \times 1.906 \times 10^4 = 7.243 \times 10^3 \text{ mol}$	
From balanced eq'n:	
2 mol NH ₃ reacts with 1 mol CO_2	
Thus 1.182×10^4 mol NH ₃ needs 5.909 $\times 10^3$ mol CO ₂	
Hence NH_3 is the limiting reagent.	
Any acceptable method for finding LR may be used as long as it is supported	
with correct working.	
Question incorrectly answered	0
Question not attempted	_
Total	5

NB: the 62% may be "applied" in any logical way

Students may choose to get the moles of NH_3 and CO_2 by finding the volume occupied by each of these gases and using the Ideal gas law twice. Gay-Lussac's law may also be used. Any valid method should be accepted. Use of a correct method for LR calculation based on incorrectly calculated moles of reagents should be rewarded.

Keywords

Stoichiometry, Chemical reactions

Question statistics

Statistics ID = CHE3-55 Number of attempts = 4644Highest mark achieved = 5.00Lowest mark achieved = 0.00Mean = 4.18Standard deviation = 1.33Question difficulty = Easy Correlation between question and section = 0.59

38(a)

Determine the limiting reagent for the reaction under the above operating conditions. Show **all** your workings. (5 marks)

Notes

Excellent response
5/5 marks

Calculates the number of moles of each reactant.

Uses the equation ratio to determine the limiting reagent.

	T
T= 200 + 273 1 = 473 1 K	Let of(CO.) be Limiting Record.
P= 148 × 101.3 = 14992.4 6Pg	Thus, n(NHs) required = 2+n(coz)
V(NH3) = 0.62 × 5000 = 3100 L	= 14482·4 mp
V(co2) = 1900 L	But n (NH,) provided is 11814. 6mg
n(NH3) = PV = 14992.4×3100 RT = 8-315 × 473-1	
RT 8-315 + 473-1	Thus not erays NHz.
= 11814.56 mol	
$n(co_2) - \frac{p_2}{R_1} = \frac{14992 \cdot 4 \times 1900}{8315 - 473}$	Thus NH3 is Limiting Reagent
= 7241.184 mo	

V(NH2) = 5000 × 0.62	$V(c_2) = 5000 - 3100$
v = 3100L	V= 1900
n(NH2)= 148× 3100 8315× 473.1	$\frac{V \simeq 1900}{14^{3} \times 1900}$ $n(\omega_{2}) \simeq \frac{14^{3} \times 1900}{5.315 \times 1473.1}$
n= 116.63mal	n= 71.482mol
: n= 58.315mol	
	: NHz is the L.R.
	V(NH2)= 5000 × 0,62 V = 3100L N(NH2)= 148 × 3100 N(NH2)= #315×473-1 N= 116.63 mal n= 58.0315 mal

Satisfactory response 3/5 marks

Calculates the number of moles of each reactant incorrectly using atmospheres.

Does not show the working of how the limiting reagent was calculated.

38(b)

What mass of urea is theoretically produced in this reaction? (3 marks)

Marking key

Description	Marks
$n(NH_2CONH_2) = \frac{1}{2} \times n(NH_3) = 0.5 \times 1.182 \times 10^4 = 5.909 \times 10^3 \text{ mol}$	1
$M(NH_2CONH_2) = 60.062 \text{ g mol}^{-1}$	1
$m(NH_2CONH_2) = 60.062 \times 5.909 \times 10^3 = 3.55 \times 10^5 g$	1
Question incorrectly answered	0
Question not attempted	—
Total	3

NB: Award marks for follow through if candidate has used incorrect LR Award marks for correct method based on incorrect LR $\,$

Keywords

Chemical reactions, Stoichiometry

Question statistics

Statistics ID = CHE3-56 Number of attempts = 4567 Highest mark achieved = 3.00Lowest mark achieved = 0.00Mean = 2.55Standard deviation = 0.81Question difficulty = Easy Correlation between question and section = 0.50

38(b)

What mass of urea is theoretically produced in this reaction? (3 marks)

NH2 10 LR 2 n (NH,) = 1181 4.56 mol 1/2×n (NHs) n (co (NH.).) Hr = 12.01 + 16 + 2 (16.026) -2 5907.28 ml. 3 60.062 andmenet m(urea) = 5907.28 - 60.062 *1 . 354803.05 ۵ 355 ×103 0-

Notes

Excellent response 3/3 marks

Starts with the limiting reagent and uses the equation to calculate the number of moles and mass of urea produced.

m= nxmr = 11014.56 x 60.062
h = 709606.10 q
~ 7710 kg

Satisfactory response 2/3 marks

Calculates the molar mass and mass of urea, but did not use the equation ratio of 2 NH₃ produces 1 $CO(NH_2)_2$.

38(c)

Calculate the mass of the excess reactant remaining after reaction. (3 marks)

Marking key

Description	Marks
$n(CO_2)$ used = $\frac{1}{2} \times n(NH_3) = 0.5 \times 1.182 \times 10^4 = 5.909 \times 10^3$ mol	1
$n(CO_2)$ remaining = 7.243 x 10 ³ - 5.909 x 10 ³ = 1.334 x 10 ³ mol	1
$m(CO_2)$ remaining = 44.01 x 1.334 x 10 ³ = 5.87 x 10 ⁴ g	1
Question incorrectly answered	0
Question not attempted	_
Total	3

Keywords

Stoichiometry, Chemical reactions

Question statistics

Statistics ID = CHE3-57 Number of attempts = 4434 Highest mark achieved = 3.00 Lowest mark achieved = 0.00 Mean = 2.33 Standard deviation = 1.03 Question difficulty = Moderate Correlation between question and section = 0.56

38(c)

Calculate the mass of the excess reactant remaining after reaction. (3 marks)

$\frac{1}{1002} \times 10^{2} \cdot \frac{1}{2} \cdot 1 \cdot 18 \times 10^{4} + 5 \cdot 91 \times 10^{3} \text{ mel}.$ $= 1 \times 10021 \text{ left} - 7 \cdot 24 \times 10^{3} - 5 \cdot 91 \times 10^{3}$ $= 1 \cdot 33 \times 10^{3} \text{ mol}.$ $= 1 \cdot 33 \times 10^{3} \text{ mol}.$ $= 1 \cdot 33 \times 10^{3} \cdot (12 \cdot 01 + 2(11 \cdot 01))$ $= \frac{1 \cdot 35}{100} \cdot 5 \cdot 87 \times 10^{4} \cdot 9.$

= 7241.19 - 6288.54 = 952.64 mol remaining	
M= 44.01	
m = n ×M	:. mass of +emaing rem = 419 25.64 = 41.93 kg
= 952.64 × 44.01	-temang rem
= 41925.6864	= 419 25.64
	= 41.93 kg

Notes

Excellent response 3/3 marks

Subtracts the reacted number of moles of CO_2 from the initial number of moles of CO_2 to find the remaining excess CO_2 reactant.

Calculates the mass of the remaining excess CO_2 reactant.

Satisfactory response 2/3 marks

Subtracts the total number of moles of NH_3 from the initial number of moles of CO_2 to incorrectly find the remaining excess CO_2 reactant.

Uses the correct method to calculate the mass of the remaining excess CO_2 reactant.

38(d)

Calculate the pressure of the remaining gas in the reactor after it is allowed to cool to room temperature (25°C). (The volume occupied by the urea crystals and water formed can be ignored.) (2 marks)

Marking key

Description	Marks
$P = \frac{nRT}{V} = \frac{1.334 \times 10^3 \times 8.315 \times 298}{5000} = 6.61 \times 10^2 \text{ kPa} \text{ (or } 6.53 \text{ atm)}$ 1 mark for correct rearrangement of eq'n; 1 mark for final answer	1–2
Question incorrectly answered	0
Question not attempted	_
Total	2

Award marks for follow through for correct working when moles of CO_2 from (c) is incorrect.

Keywords

Chemical reactions, Stoichiometry

Question statistics

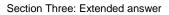
Statistics ID = CHE3-58 Number of attempts = 4295 Highest mark achieved = 2.00 Lowest mark achieved = 0.00 Mean = 1.35Standard deviation = 0.69Question difficulty = Moderate Correlation between question and section = 0.38

Notes

Candidate responses

38(d)

Calculate the pressure of the remaining gas in the reactor after it is allowed to cool to room temperature (25°C). (The volume occupied by the urea crystals and water formed can be ignored.) (2 marks)


uny encer us remand.	Excellent response 2/2 marks
$\frac{n(N_2)}{V} \stackrel{i=1}{\longrightarrow} \frac{1:33 \times 10^3}{V} \frac{N_2 N_2}{V}$	Uses the number of moles of remaining excess CO ₂
: 1.33 ×103. 8.315. (25.0+273.1)	 reactant from question 38(c) to calculate the pressure of excess CO₂
5-61 X102 KPa.	reactant at 25°C.

2 n (11817.06+7242.7) × 8.315 × (25+273) 5000 7 41, 749.2 KPa р 2 412.1 atm

Satisfactory response 1/2 mark

Uses the incorrect number of moles of remaining excess CO_2 reactant, which should be the same as for question 38(c).

Uses the correct method to calculate the pressure of excess CO_2 reactant at 25°C.

38(e)

376 kg of impure crystals are formed in the above reaction and found, on analysis, to contain 83.0% urea. Calculate the percentage yield of the above process. (2 marks)

Marking key

Description	Marks
$m(NH_2CONH_2) = 3.76 \times 10^5 \times 0.83 = 3.1208 \times 10^5 g$	1
$Yield = \frac{3.1208 \times 10^5}{3.55 \times 10^5} \times 100 = 87.9\%$	1
Question incorrectly answered	0
Question not attempted	—
Total	2

Keywords

Chemical reactions

Question statistics

Statistics ID = CHE3-59 Number of attempts = 3924Highest mark achieved = 2.00Lowest mark achieved = 0.00Mean = 1.37Standard deviation = 0.75Question difficulty = Moderate Correlation between question and section = 0.50

38(e)

376 kg of impure crystals are formed in the above reaction and found, on analysis, to contain 83.0% urea. Calculate the percentage yield of the above process. (2 marks)

	Notes
WL WHULL - 0.83. 376 × 103	Excellent response 2/2 marks
= 3.12 × 105 g. 	Uses the percentage purity and the theoretical yield from question 38(b) to calculate the yield of the process.
: (8.79 ×101)20 yveld	

376×0.83 = 312.08 96= 31208 100 90 = 83.0

Satisfactory response 1/2 marks

Uses the percentage purity and not the theoretical yield from question 38(b) to calculate the yield of the process.

38(f)

Urea is added to fertiliser preparations at about 45.0% by mass. Ammonium sulfate is an alternative source of nitrogen often used in fertilisers.

Question statistics

Statistics ID = CHE3-60 Number of attempts = 4103 Highest mark achieved = 5.00 Lowest mark achieved = 0.00 Mean = 3.14Standard deviation = 1.77Question difficulty = N/A Correlation between question and section = 0.60

38(f)(i)

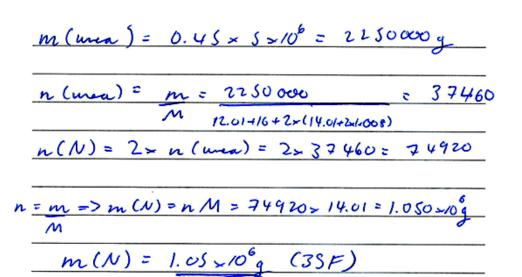
What mass of nitrogen is contained in 5.00 tonne of fertiliser that is 45.0% by mass urea? (1 tonne = 1×10^6 g) (2 marks)

Marking key

Description	Marks	
$m(NH_2CONH_2)$ in fertiliser batch = 0.45 x 5 x10 ⁶ = 2.25 x10 ⁶ g		1
$m(NH_2CONH_2) \text{ in fertiliser batch} = 0.45 \times 5 \times 10^{-2} = 2.25 \times 10^{-6} \text{ g}$ $m(N) \text{ in fertiliser} = \frac{28.02}{60.062} \times 2.25 \times 10^{-6} = 1.05 \times 10^{-6} \text{ g}$		1
Question incorrectly answered		0
Question not attempted		_
	Total	2

Keywords

Chemical reactions


Question statistics

Statistics ID = CHE3-61 Number of attempts = 4100 Highest mark achieved = 2.00 Lowest mark achieved = 0.00 Mean = 1.47 Standard deviation = 0.68 Question difficulty = Moderate Correlation between question and section = 0.48

38(f)(i)

What mass of nitrogen is contained in 5.00 tonne of fertiliser that is 45.0% by mass urea? (1 tonne = 1×10^6 g) (2 marks)

Notes

Excellent response 2/2 marks

Uses the percentage purity, when calculating the mass of nitrogen in the fertiliser.

$m(ferhlise) = 5 \times 10^6 g \qquad CO(NH_2)_2$ $m(vrea) = 2.25 \times 10^6 g$
m (urea) = 2.25 × 106 g.
$n(urea) = m = 2.25 \times 10^6$
M 58.046
= 38762.36 mol.
n (N) = 2x 38762.36
= 77524.72
m = 77524.72x 14.01
= 1.6861 tonne

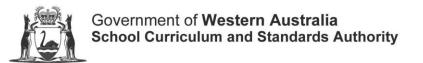
Satisfactory response 1/2 marks

Employs the correct method, but uses an incorrect molar mass for urea.

38(f)(ii)

What mass of ammonium sulfate, $(NH_4)_2SO_4$, is needed to prepare 5.00 tonne of fertiliser with the same mass of nitrogen as your answer in (i) above? (3 marks)

Marking key


Description	Marks	
$n(N) \text{ in fertiliser} = \frac{1.05 \times 10^6}{14.01} = 7.492 \times 10^4 \text{ mol}$	1	
$n((NH_4)_2SO_4) = 0.5 \times 7.492 \times 10^4 = 3.746 \times 10^4 mol$	1	
$m((NH_4)_2SO_4) = 132.144 \times 3.746 \times 10^4 = 4.95 \times 10^6 g$	1	
Question incorrectly answered	0	
Question not attempted	_	
Total	3	

Keywords

Chemical reactions

Question statistics

Statistics ID = CHE3-62 Number of attempts = 3485 Highest mark achieved = 3.00 Lowest mark achieved = 0.00 Mean = 1.96 Standard deviation = 1.19 Question difficulty = Moderate Correlation between question and section = 0.52

38(f)(ii)

What mass of ammonium sulfate, $(NH_4)_2SO_4$, is needed to prepare 5.00 tonne of fertiliser with the same mass of nitrogen as your answer in (i) above? (3 marks)

n(N) needed = 74920 $n((NH_{y})_{2}SO_{y})$ needed = $n(N) \div 2 = 37460$				
n =	m	=>	m	((NHy)2SOy) needed -A
	M		2	nM
			z,	3 7 460 x (2x (14.01+4x1.000) + 32.06+4x16
			2	4.950×10g
			×	4.95 × 10 q (3)F)

Notes

Excellent response 3/3 marks

Uses the answer from 38f(i) and the correct chemical relationship to calculate the mass of ammonium sulfate.

Satisfactory response 2/3 marks

Uses the correct method, but fails to calculate the number of moles of ammonium sulfate as half the number of moles of nitrogen.

Examiners' comments

Part (a) was well done overall, but candidates should be strongly encouraged to show adequate reasoning for their choice of limiting reagent.

Question 39

(12 marks)

A student was given three bottles, A, B and C. Each bottle was labelled with its contents as shown in the table below.

Bottle	Contents
А	46.5 mL of 0.010 mol L ^{−1} HCℓ
В	65.7 mL of 0.0555 mol L^{-1} HNO ₃
С	20.9 mL of 0.4161 mol L^{-1} NaOH

Question statistics

Statistics ID = CHE3-63 Number of attempts = 4576Highest mark achieved = 12.00Lowest mark achieved = 0.00Mean = 6.83Standard deviation = 4.10Question difficulty = N/A Correlation between question and section = 0.79

39(a)

Calculate the pH of the NaOH solution. (2 marks)

Marking key

Description	Marks
$[H^+] = \frac{1 \times 10^{-14}}{[OH^-]} = \frac{1 \times 10^{-14}}{0.4161} = 2.403 \times 10^{-14} \text{ mol } \text{L}^{-1}$	1
$pH = -log^{10}[H^+] = -log 2.403 \times 10^{-14} = 13.6 (13.619)$	1
Question incorrectly answered	0
Question not attempted	_
Total	2

Keywords

Stoichiometry

Question statistics

Statistics ID = CHE3-64 Number of attempts = 4565 Highest mark achieved = 2.00Lowest mark achieved = 0.00Mean = 1.55Standard deviation = 0.76Question difficulty = Easy Correlation between question and section = 0.52

pH = [H]

39(a)

Calculate the pH of the NaOH solution. (2 marks)

Notes

Excellent response 2/2 marks

Using K_w , calculates the H^+ concentration in the NaOH solution.

Uses the H^+ concentration of the NaOH solution to calculate the pH.

$n(OH) = n(N_qOH) = CV$	V= 0.0204L
= 0.4161 × 0.02	04
$= 8.69649_{\rm X}$	10-3 mg/
14 - (-log (n(OH)))	
= 14 - (-log (8.64649x10-3))	
PH = 11.94	

[0H-] = [MaOH] = 0.4161 moll-1

[H"] = 10-14 / 0.4161

= 2.403 ×10-14

- log (2.403×10-14) = 13.62

Satisfactory response 1/2 marks

Uses the number of moles and not the concentration to calculate the pH from the pOH.

39(b)

The contents of all three bottles are placed in one beaker and mixed thoroughly. Calculate the pH of the final mixture.

(10 marks)

Marking key

Description	Marks
$n(H^{+})$ from HCl = c ×V = 0.010 × 0.0465 = 4.65 × 10 ⁻⁴ mol	1
$n(H^{+})$ from $HNO_3 = c \times V = 0.0555 \times 0.0657 = 3.646 \times 10^{-3}$ mol	1
$n(H^{+})_{total} = 4.65 \times 10^{-4} + 3.646 \times 10^{-3} = 4.111 \times 10^{-3} \text{ mol}$	1
$n(OH^{-}) = c \times V = 0.4161 \times 0.0209 = 8.696 \times 10^{-3} mol$	1
Recognition that 1 mole of H^+ reacts with 1 mole of OH^- ; this may be by showing the mole relationship $n(H^+) = n(OH^-)$ or giving the balanced equation	1
$n(OH^{-})$ reacted = $n(H^{+})_{total}$ = 4.111 × 10 ⁻³ mol	1
$n(OH^{-})$ excess = 8.696 × 10 ⁻³ - 4.111 × 10 ⁻³ = 4.585 × 10 ⁻³ mol	1 ·
$c(OH^{-}) = \frac{n}{V} = \frac{4.585 \times 10^{-3}}{(0.0465 + 0.0657 + 0.0209)} = \frac{4.585 \times 10^{-3}}{0.1331} = 3.444 \times 10^{-2} \text{mol L}^{-1}$	1
$[H^+] = \frac{1 \times 10^{-14}}{[OH^-]} = \frac{1 \times 10^{-14}}{3.444 \times 10^{-2}} = 2.903 \times 10^{-13} \text{ mol } \text{L}^{-1}$	1
$pH = -log_{10}[H^+] = -log 2.903 \times 10^{-13} = 12.5 (12.537)$	1
Question incorrectly answered	0
Question not attempted	_
Total	10

NB: Steps may be amalgamated

Students may also calculate pH using: $pOH = -log^{10}[OH^-] = -log 0.03444 = 1.46$ (2 marks) pH = 14 - 1.46 = 12.54 (1 mark)

Keywords

Stoichiometry

Question statistics

Statistics ID = CHE3-65 Number of attempts = 4227 Highest mark achieved = 10.00 Lowest mark achieved = 0.00 Mean = 5.72 Standard deviation = 3.53 Question difficulty = Moderate Correlation between question and section = 0.74

Candidate responses

39(b)

The contents of all three bottles are placed in one beaker and mixed thoroughly. Calculate the pH of the final mixture.

(10 marks)

$$n(HCi) = (0.010)(0.0465) = 0.000465 \text{ mol}$$

$$n(HAO_3) = (0.0555)(0.0657) = 0.0036464 \text{ mol}$$

$$n(AbOH) = (0.4161)(0.0209) = 0.008696 \text{ mol}$$

$$Total n(H^{+}) = 0.0041114 \text{ mol} n(0H^{-}) = 0.008696 \text{ mol}$$

$$Result : n(0H^{-}) = 0.0045846 \text{ mol}$$

$$Total volume = 133.1 \text{ mL} = 0.1331 \text{ L}$$

$$[0H^{-}] = 0.0045846 \text{ mol}$$

Notes

Excellent response 10/10 marks

Calculates the number of moles and concentration of the excess OH⁻. Using K_w calculates the H^+ concentration and then the pH.

	Total volume is 46-5+65.7+20.9 = 133.1 mL = 0.1331 L
[A]	n(H)=CU = 0010(0.0465) = 0.000465 mol of H
[1]	n (H ⁺)= CU
[2]	= 0.0555(0.0657) = 0.003646 mol of H ² $[H_30^{-1}] = 2.403 \times 10^{-14}$ mol L ⁻¹
	we have 0.1331 L ie 3, 198 × 10 -15 mot of H+
	Total = 0,000465 + 0.003646 + 3,198 × 1015
	= 0.004111 mol of H+ C=n = 0.00411 = 0.3089
	V 0.133
• •	PH = -Log(0.3089) = 1.81

Satisfactory response 5/10 marks

Calculates the number of moles of the H^+ , the total volume and a pH value.

Ignores the effect of the OH^{-} reacting with the H⁺.

Examiners' comments

Part (b) presented challenges for a large number of candidates. Many did not recognise the chemical reaction that would take place when the solutions are mixed, and therefore did not pay attention to the stoichiometric aspects of the problem. Those who recognised the neutralisation reaction and the need to calculate excess reactants, performed well in answering the question. A common error was simply to calculate the $[H^+]$ of all solutions (including NaOH) and sum the hydrogen ion concentrations.

Question 40 (15 marks)

Biodiesel can be produced by a trans-esterification reaction between vegetable oil and an alcohol in the presence of sodium hydroxide catalyst. A typical trans-esterification reaction is shown below. The products are glycerol and three methyl esters.

ії -С—СН₂(СН₂)₁₃СН₃ 0 .C CH₂(CH₂)₆CHCH(CH₂)₇CH₃ 3 CH₃OH Vegetable oil 0 CH₂(CH₂)₆CHCHCH₂CHCHCH₂CHCHCH₂CH₃ Н н NaOH CH₂(CH₂)₁₃CH₃ Α OH + OH \cap С В CH₂(CH₂)₆CHCH(CH₂)₇CH₃ OH н t Glycerol O CH₂(CH₂)₆CHCHCH₂CHCHCH₂CHCHCH₂CH₃ C H₂C Methyl esters

Question statistics

Statistics ID = CHE3-66 Number of attempts = 4548 Highest mark achieved = 15.00 Lowest mark achieved = 0.00 Mean = 9.76 Standard deviation = 3.76 Question difficulty = N/A Correlation between question and section = 0.82

40(a)

The vegetable oil in the reaction above has a molar mass of 855.334 g mol⁻¹. If 1.50 tonnes of vegetable oil is reacted, what mass of methanol will be required to react with this amount of oil? (1 tonne = 1×10^6 g) (3 marks)

Marking key

Description	Marks
$n(\text{Veg oil}) = \frac{1.5 \times 10^6}{855.334} = 1.754 \times 10^3 \text{ mol}$	1
$n(CH_3OH) = 3 \times n(Veg oil) = 5.261 \times 10^3 mol$	1
$m(CH_3OH) = 5.261 \times 10^3 \times 32.042 = 1.69 \times 10^5 g$	1
Question incorrectly answered	0
Question not attempted	-
Total	3

Keywords

Stoichiometry

Question statistics

Statistics ID = CHE3-67 Number of attempts = 4406 Highest mark achieved = 3.00 Lowest mark achieved = 0.00 Mean = 2.70 Standard deviation = 0.66 Question difficulty = Easy Correlation between question and section = 0.44

 $n(vil) = m = 1.5 - 10^6 = 1754$ M = 955.334

n((H,UM) needed = 3×n (oil)=3-1754= 5261

Candidate responses

40(a)

The vegetable oil in the reaction above has a molar mass of 855.334 g mol⁻¹. If 1.50 tonnes of vegetable oil is reacted, what mass of methanol will be required to react with this amount of oil? (1 tonne = 1×10^6 g) (3 marks)

Notes

Excellent response 3/3 marks

Uses the equation to find the number of moles of oil and then correctly calculates the mass.

n (vege oil) = (1.5×10° 555.374	
= 1.75×10 ³ mol	
n (methand) = 1.75×103 mol	
m (Methanol) = 1.75×103 × 32.042	
= 56.07 Kg	

 $n = n_2 \rightarrow m((H_2 \cup H) = n M = 5261 \times (12.01 + 4 \times 1.008 + 16) = 1.69 \times 10g(3517)$

Satisfactory response 2/3 marks

Calculates the number of moles and mass of oil without using the equation ratio.

40(b)

Three different methyl esters, denoted **A**, **B** and **C**, are produced from this reaction. What is the mass of Ester **A** produced in this process if the reaction is 78% efficient in production of this ester? (4 marks)

Marking key

Description	Marks
For 100% efficient: $n(A) = n(Veg oil) = 1.754 \times 10^3 mol$	1
78% efficient, thus n(A) = $0.78 \times 1.754 \times 10^3 = 1.368 \times 10^3$ mol	1
MF Ester A is $C_{17}H_{34}O_2$ thus M(A) = 270.442 g mol ⁻¹	1
$m(A) = 1.368 \times 10^3 \times 270.442 = 3.70 \times 10^5 g$	1
Question incorrectly answered	0
Question not attempted	_
Total	4

The 78% efficiency step can be done based on the theoretical 100% efficient mass of A rather than number of moles of A.

Keywords

Chemical reactions

Question statistics

Statistics ID = CHE3-68 Number of attempts = 3995 Highest mark achieved = 4.00 Lowest mark achieved = 0.00 Mean = 3.26 Standard deviation = 1.17 Question difficulty = Moderate Correlation between question and section = 0.46

Candidate responses

40(b)

Three different methyl esters, denoted **A**, **B** and **C**, are produced from this reaction. What is the mass of Ester **A** produced in this process if the reaction is 78% efficient in production of this ester? (4 marks)

Notes

$\frac{n(\Lambda) \text{ theoretically produced} = n(\text{out}) = 1754$ $n(\Lambda) \text{ actually produced} = 0.78 \times n(\text{out}) = 0.78 \times 1754 = 1368$ $\frac{n = m / M}{m(\Lambda) = nM}$

1368×(17>12.01+2>16+34+1.00+)

(35F)

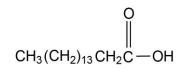
Excellent response

n(A) = n(keqt oil) = 1753.7 m(A) = n × nor = 1753.7 × 25 9,442 = U54983.449 m(ester A achielly produced) = = 454983.444 × 78%. = 354887.089 = 354.89kg ester A

4/4 marks

Uses percentage efficiency to correctly calculate the mass of ester produced.

Satisfactory response 3/4 marks


Employs the correct method, but uses an incorrect molar mass.

40(c)

Esters can also be produced by the reaction of a carboxylic acid with an alcohol. Draw the structure of the carboxylic acid that would be needed to produce Ester A in the reaction above. Show H atoms. (1 mark)

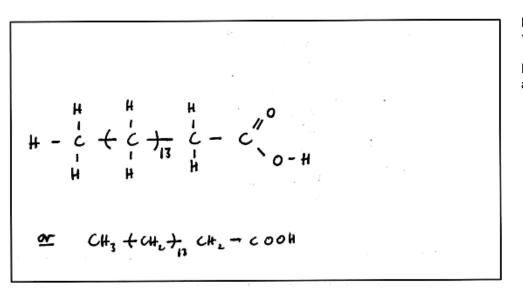
Marking key

Description	Marks
1 mark for structure; condensed or expanded acceptable.	1
Question incorrectly answered	0
Question not attempted	-
Total	1

Keywords

Carboxylic acid

Question statistics


Statistics ID = CHE3-69 Number of attempts = 4090 Highest mark achieved = 1.00 Lowest mark achieved = 0.00 Mean = 0.73Standard deviation = 0.45Question difficulty = Moderate Correlation between question and section = 0.40

Candidate responses

40(c)

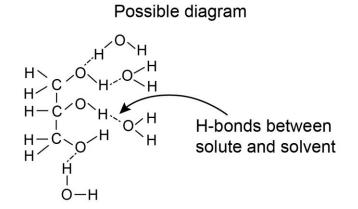
Esters can also be produced by the reaction of a carboxylic acid with an alcohol. Draw the structure of the carboxylic acid that would be needed to produce Ester A in the reaction above. Show H atoms. (1 mark)

Notes

Excellent response 1/1 mark

Draws the carboxylic acid and shows all H atoms.

40(d)


The glycerol produced from this process has a wide range of applications, including anti-freeze in the radiators of engines. A factor that contributes to its use as anti-freeze is its high water solubility. Explain, with the aid of a diagram, why glycerol has high water solubility. (4 marks)

Marking key

Description	Marks	
1 mark for recognition that both water and glycerol have H-bonding as their predominant type of IMF.	1	
1 mark for showing that their similar IMFs leads to a high degree of interaction between solvent and solute molecules/formation of H-bonding	1	
I mark for recognising that solubility arises due to the strength of attraction between solute and solvent molecules being sufficient to overcome attraction between solute-solute and solvent-solvent molecules**	1	
1 mark for a suitable labelled diagram representing H-bonding between water and glycerol molecules.	1	
Question incorrectly answered	0	
Question not attempted.	_	
Total	4	

**An explanation in terms of the competing forces of attraction between solute-solute molecules, solvent-solvent molecules and between solvent-solute molecules is also acceptable. Students may also discuss the energy released when solvent-solute molecules attract being sufficient to overcome the energy to separate solute-solute molecules and solvent-solvent molecules.

'Like dissolves like', contains no chemistry and should not be awarded any marks.

Keywords

Solubility, Hydrogen bonding

Question statistics

Statistics ID = CHE3-70 Number of attempts = 4120 Highest mark achieved = 4.00Lowest mark achieved = 0.00Mean = 2.12Standard deviation = 1.19Question difficulty = Moderate Correlation between question and section = 0.65

Candidate responses

40(d)

The glycerol produced from this process has a wide range of applications, including anti-freeze in the radiators of engines. A factor that contributes to its use as anti-freeze is its high water solubility. Explain, with the aid of a diagram, why glycerol has high water solubility. (4 marks)

Notes

Excellent response 4/4 marks

Explains, using a diagram and the hydrogen bonding of each liquid, why glycerol has a high solubility in water.

Solubility depends on whether the torned He solute and solvent are of equal strength to hose between the solute particles by Myscher or solverty by Hunselve. hudrogen Water eachibits solutes Hart con form H-bords are highly Solube SO This is true water. ot wich has alcohol (OH) Hat hneboul groups con exhibi with wates H-bordero 434 н 431

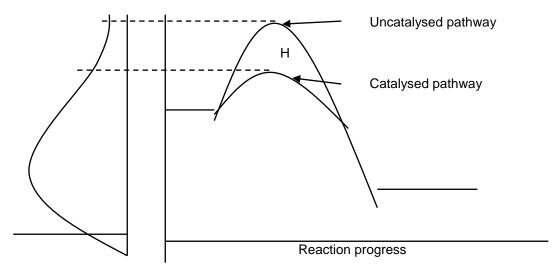
alycerol has high water solubility groups. T to the presence of able are to form Hydridgen bands with the water molecules. This form dipoles allows cerol H⁺ and o (ione pairs) between the water le to the unclea gyerol. of bonds = high solubility These formed - OH- --:0 H. C-OH H. ۱ C.

Notes

Satisfactory response 3/4 marks

Discusses the hydrogen bonding of glycerol and water, but does not mention that solubility arises from the strength of attraction between solute and solvent molecules.

40(e)


Use your understanding of the collision theory to explain the role of sodium hydroxide in the reaction. (3 marks)

Marking key

Description	Marks
1 mark for recognising that the NaOH speeds the reaction	1
1 mark for recognising the NaOH provides an alternative reaction pathway that has lower E _a than the uncatalysed pathway	1
1 mark for recognising a higher proportion of collisions will occur with energy above the E_a (cat) and so be successful in forming products	1
Question incorrectly answered	0
Question not attempted	—
Total	3

NB: Must show some understanding of catalytic action of NaOH

An appropriately labelled energy profile diagram showing the catalysed and uncatalysed reaction pathways may be drawn to aid explanation. For a correct diagram on its own with no supporting explanation award 2 marks.

Keywords

Catalysis, Kinetic theory

Question statistics

Statistics ID = CHE3-71 Number of attempts = 3971 Highest mark achieved = 3.00 Lowest mark achieved = 0.00 Mean = 1.95 Standard deviation = 1.10 Question difficulty = Moderate Correlation between question and section = 0.46

Candidate responses

40(e)

Use your understanding of the collision theory to explain the role of sodium hydroxide in the reaction. (3 marks)

Notes

Excellent response 3/3 marks

Uses the collision theory to explain the role of a catalyst.

happy acts as a catalyst in the reaction. A catalyst
is a substance thick provides an alternative
reaction partner and with lower activation energy.
This increases the proper tron of particle continions
The union the reaching more conside in the new,
recessory activation energy, thereby increasing
the sate of the trans-estenification deech-on.

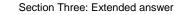
the Sodum hydroxid rathingy

Satisfactory response 2/3 marks

States the role of a catalyst, without referring to collision theory.

Examiners' comments

This question was very well done, although most candidates were unable to adequately describe the processes occurring during dissolution, and were equally unable to draw a diagram that suitably illustrates forces established during dissolution. The relative strength of solute-solvent interactions and solute-solute, solvent-solvent interactions during dissolution should be highlighted to candidates.


Question 41 (10 marks)

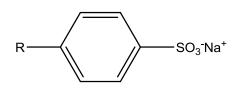
Soaps and detergents are common organic substances. Discuss the chemistry of these two classes of organic substances, including their structure, manufacture and how they act as cleaning agents.

Your answer should

- include relevant chemical content. (8 marks)
- display coherence and clarity of expression. (2 marks)

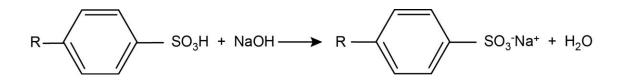
A comprehensive answer should consist of at least three (3) paragraphs and be at least one page in length.

Marking key


• Soaps are sodium (or potassium) salts of long chain fatty acids.

Typical soap molecule

- Soaps are manufactured by reaction of sodium (or potassium) hydroxide with an animal fat or vegetable oil. Fats and oils are esters of glycerol (1,2,3-propantriol). Known as a saponification reaction. The hydroxide hydrolyses the ester to give the sodium salt.
- General equation for saponification


$$\begin{array}{ccccccc} & & & & & & & \\ H_2C-O-C-C(CH_2)_{16}CH_3 & & & & \\ & & & & \\ H_C-O-C-C(CH_2)_{16}CH_3 & & + & 3 \text{ NaOH} \end{array} \longrightarrow 3 \text{ CH}_3(CH_2)_{16}C-O^-\text{Na}^+ & + & \begin{array}{c} H_2C-OH \\ & & & \\ H_2C-OH \\ & & & \\ H_2C-OH \end{array}$$

• Detergents are sodium (or potassium) salts of an alkylbenzene sulfonate.

R = long chain alkyl group

- Detergents are manufactured by reaction of alkylbenzenes with concentrated sulfuric acid to give the alkylbenzene sulfonate which is then reacted with sodium hydroxide to give the detergent.
- General equation

- Soaps and detergents are surfactant molecules comprised of a large non-polar part and a small polar part.
- The non-polar section of the soap/detergent molecule will dissolve in the (usually) non-polar dirt or grease with the polar section dissolved in the polar water.
- Agitation can then enable the soap/detergent molecule to lift the dirt/grease from the object to be cleaned.

Marking key (continued)

Description	Marks
Coherent sentences and clarity of expression	1–2
Structure for general soap molecule or specific example (can be part of the saponification equation) (ion or salt)	1
Comparison of effectiveness of detergents vs. soaps or manufacture of either (soap or detergent)	1–2
This would include reference to reaction of soap with Mg ²⁺ and Ca ²⁺ ions to form scum	1-2
Structure for general detergent molecule or specific example acceptable (can be part of the detergent equation) (ion or salt)	1
Recognition of non-polar and polar nature of soap/detergent molecules	1
Recognition that the non-polar part of the molecule dissolves in the dirt/grease and the polar part of the molecule dissolves in the water	1–3
Question incorrectly answered	0
Question not attempted	
Total	10

Keywords

Soaps, Detergents

Question statistics

Statistics ID = CHE3-72 Number of attempts = 4217 Highest mark achieved = 10.00 Lowest mark achieved = 0.00 Mean = 4.36 Standard deviation = 2.52 Question difficulty = Moderate Correlation between question and section = 0.68

Candidate responses

Question 41 (10 marks)

Soaps and detergents are common organic substances. Discuss the chemistry of these two classes of organic substances, including their structure, manufacture and how they act as cleaning agents.

Your answer should

- include relevant chemical content.
 (8 marks)
- display coherence and clarity of expression.
- (2 marks)

STRU(TURE

A comprehensive answer should consist of at least three (3) paragraphs and be at least one page in length.

Notes

Soap is a salt and contains (arboxyli (au d) while devergents are ally hensene sultanettes. polarend and a non polar end. Scap consists of a (H) ((H)) (H' ((H))" bolar end end As seen in the diagram above scap has a hon-polar end due to the hydrocarbon chain and a polar end due to the carboxy lie acid group similarly detergent also has a polar and non-polar end. the polar end is due to the SO3" group and (H3 (H2) 16 (H dio (arbon chain is nonpolar. 503 *pola* non-potar MANUF A (TU DE soap is made by reading animal lats or oils with gly (evo) and then reacting the product with sodium hydroxide. An example of the reaction with sodium H2C-O- C((H2)16 (H3 HIC-OH Ludiaxide . HC-0 - C((H2) 16 (H3 NO OH 4 HC - OH 3 (H3 ((H)) (H2 C-O - C ((H2)16 (H3 H2(-0H soap qlycerol

Excellent response 10/10 marks

Discusses, with the use of equations and diagrams, the chemistry of soaps and detergents.

The discussion includes the structure, manufacture and how they act as cleaning agents.

Notes

Detergent is made by reaching an alby I beneane with contentrated suffurk acid. (Hs((Hs))6 (Hz-(Hy (CH2) 1 (Hr റ +DesH 4 N2O HsQ The product is then reached with sodium hy amaride to tom delargent (H3((H2)16 (H2 -C + 64-(H3((H2)r(H2 + H&O SO'H SO3 KTION scap and detergent out as cleaning agents in much the same may Since they both have a polar and, this end-will lath Since boop has a polar (00 end, and detergent tak a polar 505 end, these ends will form dipole - dipole forces with water molecules (which are polar) Their long hydrocarbon chain is however hon-polar and will fo im with the water molecules, and as timm These by discorban chains form discpersion forces with the non-polar ends at other molecules, turning a structure called a micelle When added to work 20 GH ₩₽₽ police end nen-polar H₂O *N°*9 (Lydnoear ban (hat) Q_H ¥20 hippage or dit positicles are non-beller and so are an able to dissolve in water. When soaps or detergents are added, the wan- to be ends are attracted to the grease particles by dispersion forces. The grease particle is then juriounded by abor soop / detendent barticles and become captured on the micelle. MrD O This allows the greate particle to at a a holar molecule #1O ٥ and discove in water to be worked WD.

Notes

Schubbling will increase the rate of cleaning process as this will break apart any micelles that has tormed and increase interaction between detergent on soop moticules with the dist or grease basticle.

Scaps are biogradeable while detengents are not However, scap reads with tons in

hard water to form sum (precipitates). For example, reacting with calciumions. (H3((H2)14 (00 (eq) + (q2+ (aq) →

(a ((H3 ((H2))4 (00) 2 (3)

Detagents do not form summ hard water.

Soaps are mode from the process supportification - It is used in household to clean or remove dive thousant, soaps has its disadvantage that it will form scum in hard water that contains cat or mg + ions. Thus requiring more easy to be used. To solve this problem, detergents are being magnificatured . betergent does not form scum in hard water.

Soap scap contain two main parts, one is the hydrophobic hon-polar tail of hydrocorbons and the other is hydrophilic polar head. The structure of scap is as below;

R-	C00-
long how polar	the functional group of scap
long how-polar hydrocarbon	and also the hydrophilic head .

The hydrophobic non-polar hydroccirbon chain can only form dispersion force between them. towever the hydrophic head can form hydrogen tonat dipole-dipole forces between the soaps. Detergent on the other hand has also two main parts some as the the soap will remove hand has also two main parts the hydrop Soap. The difference is the functional group is not coo instead is 103. Detergent is formed by adding and the hydrocarbon cain autified contains a benzene ring. Detergent is formed by adding the fizsoy

to the original structure of delergent.

Both soap and detergent remove the dirt by forming micelle on the dirt. The diagram below shows how micelle;

the the
He a the hydrocarbon chain Chydrophobic
dive
40 H 0 HU
hydrophilic polar head.

Notes

Satisfactory response 7/10 marks

Discusses, with the use of diagrams, the structure and manufacture of soaps and detergents.

Provides a brief discussion of how soaps and detergents act as cleaning agents.

Examiners' comments

This was the most difficult question of the section. It is not clear whether it is because this part of the syllabus is challenging for candidates, or whether the nature of the question was inherently challenging or the type of question not practiced routinely. The question required a very heavy emphasis on content. Few responses contained diagrams and chemical equations; candidates should be reminded that an explanatory response still requires equations and diagrams, even if the question does not explicitly ask for them.

Government of Western Australia School Curriculum and Standards Authority

Appendix 1: Course achievement band descriptions

Excellent achievement (75 - 100)

- Recognises the limiting reagent aspect when determining the pH of a mixture of acids and bases.
- Distinguishes between species by recognising chemical differences.
- Uses logical reasoning and appropriate precision in calculations.
- Transfers chemical concepts to unfamiliar situations.
- Clearly communicates a range of concepts, including intermolecular forces, acid-base theory, catalysis, electrochemical cells and the chemistry of cleaning agents.
- Uses correct terminology, annotated diagrams and relevant equations.

High achievement (65 - 74)

- Completes multi-step calculations with minor errors or omissions.
- Explains the solution process and the role of the hydrogen half-cell using relevant terminology.
- Uses hydrolysis equations in explaining pH data.
- Consistently applies Le Chatelier's Principle.
- Draws and names geometric isomers.

Satisfactory achievement (50 - 64)

- Draws and names structural isomers and constructs an addition polymer.
- Applies VSEPR Theory to determine shapes of simple molecules.
- Represents hydrogen bonding diagrammatically.
- Calculates the pH of a basic solution.
- Applies a stoichiometric ratio to determine a limiting reagent.
- Combines half-equations by balancing electrons.
- Applies solubility rules to distinguish solutions.
- Describes the hydrophobic and hydrophilic properties of surfactant ions.

Limited achievement (35 - 49)

- Draws a Lewis structure and uses it to determine molecular shape without applying theory.
- Converts units and correctly substitutes into the Ideal Gas Equation.
- Inconsistently applies Le Chatelier's Principle.
- Provides simplistic explanation of catalysis.

Inadequate achievement (0 - 34)

- Applies the octet rule to drawing Lewis structures of simple molecules.
- May rearrange expressions, substitute data and calculate molar masses.
- May identify an alkene and draw simple isomers.
- Recalls only that water forms hydrogen bonds.

Cut points:

Excellent/High = 69.61 High/Satisfactory = 59.10 Satisfactory/Limited = 42.56 Limited/Inadequate = 24.88

Appendix 2: Rasch analysis of examinations

Rasch analysis is used to test the reliability and validity of an examination. It produces numerical estimates of the ability of the students who sat the examination and the difficulty of each item in the examination. An 'item' is a scoring opportunity. It may be a whole question (e.g. a multiple-choice question) or, in the case of questions that are broken down into discrete elements, a part of a question or a sub-part of a question.

In Rasch analysis, the estimates of student ability and item difficulty are placed on a common measurement scale, like a ruler. Items are clustered into five bands: *Very easy, Easy, Moderate, Difficult* and *Very difficult*. Items that are less difficult to answer correctly are located to the left and items that are more difficult to answer correctly are located to the left and items are located to the left and more able students are located to the right.

The boundary of the *Moderate* difficulty band is determined by the difficulty of the middle 68% of items, i.e. the difficulty is one standard deviation from the mean student location. The boundaries for the *Very easy–Easy* and the *Difficult–Very difficult* band are determined by reference to student abilities.

Less able students						More able students
Less difficult questions	< o Very easy	Easy	o o Moderate	Difficult	Very difficult	More difficult questions

Table 1 on the following page provides the item difficulty analysis for the 2011 Stage 3 WACE examination for Chemistry.

Notes

- N/A (in the Difficulty estimates in this Guide) indicates the item was not used in the Rasch analysis. This is because one or more items had too few responses (or no responses).
- As shown in Table 1, when a question consists of a number of items (e.g. in the case of questions 37-40), the difficulty estimate is given for each item, not for the question as a whole.
- In the Rasch model, the higher a student's ability, relative to the difficulty of an item, the greater the chances are of that student scoring the correct answer. When a student's *ability location* is equal to the *difficulty location* of an item, there is a 50/50 (or 0.5) probability of that student scoring the correct answer.
- The Rasch model is used in the analysis of data for NAPLAN and PISA and is also used in disciplines such as medicine and the social sciences.
- Location values for student difficulty and item ability are given as *logits* (a contraction of the phrase 'logodds units'). Because logit values are based on probability, they are also referred to as *estimates* of item difficulty and *estimates* of student ability.

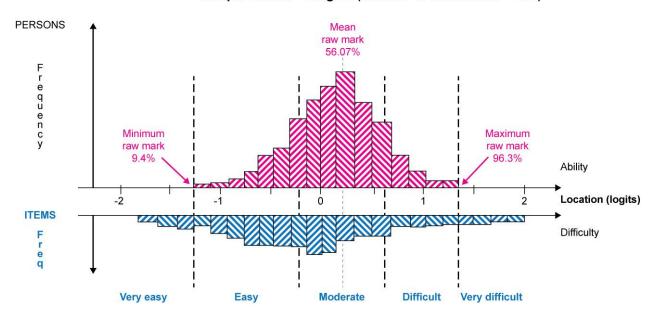
Government of Western Australia School Curriculum and Standards Authority

Section	Question	Location	Difficulty Very easy	
S01	1	-1.56		
S01	2	-1.44	Easy	
S01	3	-1.13	Easy	
S01	4	-0.36	Easy	
S01	5	-1.66	Very easy	
S01	6	0.09	Moderate	
S01	7	-0.23	Easy	
S01	8	-2.23	Very easy	
S01	9	-1.34	Easy	
S01	10	-0.38	Easy	
S01	11	-0.58	Easy	
S01	12	-0.08	Easy	
S01	13	-1.19	Easy	
S01	14	0.26	Moderate	
S01	15	0.56	Moderate	
S01	16	0.59	Moderate	
S01	17	-0.22	Easy	
S01	18	-1.13	Easy	
S01	19	1.59	Difficult	
S01	20	-0.50	Easy	
S01	21	-0.02	Easy	
S01	22	-1.22	Easy	
S01	23	0.37	Moderate	
S01	24	1.70	Difficult	
S01	25	-0.11	Easy	
S02	26	-0.80	Easy	
S02	27	0.00	N/A	
S02	27a	0.66	Moderate	
S02	27b	0.37	Moderate	
S02	27c	-0.15	Easy	
S02	28	0.00	Moderate	
S02	29	0.95	Moderate	
S02	30	0.94	Moderate	
S02	31		N/A	
S02	31a	0.77	Moderate	
S02	31b	-0.36	Easy	
S02	32	0.00	N/A	
S02	32a	0.24	Moderate	

Table 1: Item difficulty analysis for the 2011 Stage 3 Chemistry examination

Table 1: Item difficulty analysis for the 2011 Stage 3 Chemistry examination (continued)

Section	Question	Location	Difficulty
S02	32b		N/A
S02	32bi	-0.59	Easy
S02	32bii	0.07	Moderate
S02	32biii	0.10	Moderate
S02	33	-0.06	Easy
S02	34	-0.20	Easy
S02	35		N/A
S02	35a	0.87	Moderate
S02	35b	0.52	Moderate
S02	35c	0.96	Moderate
S03	36	0.02	Moderate
S03	37		N/A
S03	37a	-0.20	Easy
S03	37b	0.47	Moderate
S03	37c	1.79	Difficult
S03	38		N/A
S03	38a	-0.26	Easy
S03	38b	-0.45	Easy
S03	38c	-0.01	Moderate
S03	38d	0.22	Moderate
S03	38e	0.46	Moderate
S03	38f		N/A
S03	38fi	0.16	Moderate
S03	38fii	0.76	Moderate
S03	39		N/A
S03	39a	-0.17	Easy
S03	39b	0.64	Moderate
S03	40		N/A
S03	40a	-0.40	Easy
S03	40b	0.26	Moderate
S03	40c	0.12	Moderate
S03	40d	0.91	Moderate
S03	40e	0.56	Moderate
S03	41	1.05	Moderate


Government of Western Australia School Curriculum and Standards Authority

A walk-through of a graph of student ability and item difficulty

Graph 1 (for a sample Stage 3 WACE examination with 450 candidates) provides an example of how data from a Rasch analysis of student ability and item difficulty can be represented.

Graph 1

Relationship between student ability and item difficulty Sample course - Stage 3 (number of candidates = 450)

- The frequency distribution of estimates of student abilities is shown in the top half of the graph.
- The frequency distribution of estimates of item difficulties is shown in the bottom half of the graph.
- These two measures share a common horizontal scale showing locations, expressed as logits.
- Logit values do not relate directly to percentage marks; however, the percentage raw exam scores are represented on the graph, e.g. the maximum raw mark, the minimum raw mark and the mean raw mark of the examination.
- The relationship between the ability of students and the difficulty of items is such that
 - a student with an ability estimate *equal* to the difficulty of an item has a 50% chance of achieving the maximum available mark for the item
 - a student with an ability estimate greater than the difficulty of an item has more than a 50% chance of achieving the maximum available mark for the item
 - a student with an ability estimate less than the difficulty of an item has less than a 50% chance of achieving the maximum available mark for the item.
- Items of 'average' or 'moderate' difficulty are placed around the mean person ability; items of increasing difficulty are placed to the right and items of decreasing difficulty are placed to the left.

Government of Western Australia School Curriculum and Standards Authority

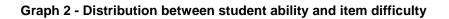
A good spread of student abilities and item difficulties – and some questions for discussion

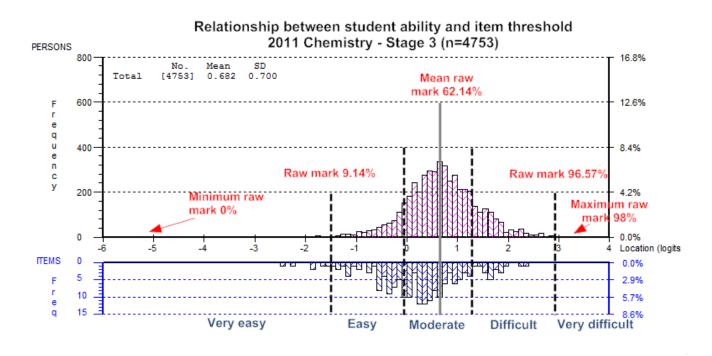
Graph 1 presents one example of a good spread of student abilities and question difficulties resulting from a Rasch analysis of a fictional examination:

- the mean raw mark (56.07) is considered appropriate, within general statistical terms and in terms of the expectations for WACE examinations
- Discussion question: In terms of raw marks, has this been a difficult or easy examination?
- the minimum examination mark is close to zero and the maximum is close to 100%.
- Discussion questions: What are the implications of having a range of raw marks from 0% to 100%? For example, is this useful for the purposes of discrimination?
- the range of marks (9.4% to 96.3%) is appropriate.
 - Discussion question: In terms of raw marks, has this examination efficiently discriminated among students, i.e. were some items too easy or too difficult for this cohort?
- the distribution of item difficulties is good in relation to the distribution of student abilities.
 - Discussion question: What implications are suggested when there are items with difficulty estimates greater than the maximum ability estimate and less than the minimum ability estimate?

Why are two graphs provided for some examinations?

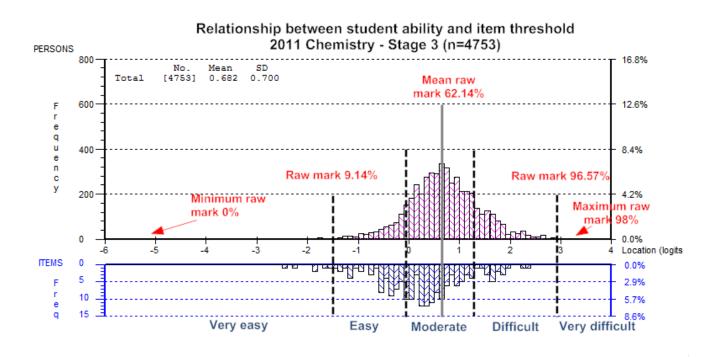
When an item is worth just 1 mark, it is known as a dichotomous item. When an item is worth more than 1 mark, it is known as a polytomous item.


For polytomous items, the item difficulty is the average of the difficulties of achieving each mark allocated to the item. Misleading conclusions can sometimes be drawn from graphs of these data when there are gaps in the item difficulty distribution, e.g. there may appear to be not enough difficult items or not enough easy items.


In these instances, it can be useful to check the distribution of the difficulty estimates for achieving each individual mark (marks category). A Rasch analysis allows for graphing the difficulty in scoring each mark, or the *threshold* for moving from one mark to the next.

Where possible, therefore, *two* graphs are provided in the Standards Guides 2011: Examples are Graphs 2 and 3 below for the 2011 Stage 3 Chemistry examination.

Graph 2 shows the item difficulty and the student abilities frequency distribution.



Notes

As the graph shows, there were not enough 'difficult' and 'very difficult' items. However, although an item might not be 'difficult' or 'very difficult', it is possible that it was difficult to achieve the higher marks for that item. The difficulty of achieving each mark is called a 'threshold'. Therefore, for a better understanding of item difficulty, we need to analyse the distribution of person abilities and thresholds, as shown in Graph 3.

Graph 3 (opposite) shows the difficulty of achieving each category and the student abilities frequency distribution

Graph 3 - Distribution between student ability and item thresholds difficulty

Notes

From the spread of item thresholds in this graph, we can see that there were no items that had marks that were 'very difficult' to achieve. This indicates that to challenge and differentiate better among the best students there would need to be more items with thresholds that were 'difficult' or 'very difficult' to achieve.

Some points to bear in mind for understanding examination analysis

- When evaluating the **range** (spread) of examination marks, consider the size of the cohort sitting the examination. A small cohort may involve a narrow range of student abilities.
- When evaluating the **mean** examination mark, consider the nature of the cohort sitting the examination. The examination difficulty may be appropriate for the cohort for which the course was designed, but the actual cohort may be weaker or stronger than expected.
- In these notes, the **difficulty** of the item refers to the *average* of the difficulties of acquiring each marks category for the item. For example, it may be very difficult to obtain a high mark for an item rated as being of 'moderate difficulty', if that item is worth a large number of marks. Conversely it may be very easy to obtain a low mark.
- Recommendations to remove items of a certain level of difficulty or easiness do not imply that these are poor items, but simply that there are too many items at the same level of difficulty.
- Recommendations to add more difficult items may result in a better discrimination among students.